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1 Introduction

In industries where firms benefit from learning-by-doing (LBD), there is a natural tension

between achieving productive efficiency, which will require concentrating production at a single

producer, and sustaining competition, which may require spreading production across multiple

firms. Economists have analyzed a range of models to understand whether unregulated market

equilibria will sustain competition, how efficient these equilibria are and how surplus is split

between customers and producers.

One literature has used analytical theory to consider models where there are two competing

suppliers and a single long-lived buyer who purchases a single unit each period and cannot

commit to long-run contracts (Lewis and Yildirim (2002)).1 The Lewis and Yildirim model

has a unique Markov Perfect equilibrium where the monopsonist spreads its purchases across

duopolists to maintain competition, although this strategy can raise prices as sellers have

weaker incentives to gain an advantage.

A second literature also models two competing suppliers with a single unit sold each period,

but assumes that buyers are atomistic or, equivalently, that buyers make purchase decisions

myopically. Most notably, Cabral and Riordan (1994) consider a model where duopolists sell

differentiated products, cost reductions stop once a certain level of cumulative sales is reached

and there is an infinite sequence of short-lived buyers with heterogeneous preferences over

the sellers. They show that when a supplier may choose to exit, equilibria where firms price

aggressively to try to drive their rival out of the market can exist, and markets can tend

towards monopoly.

This observation has led David Besanko and co-authors to use computational methods

to analyze, in a systematic way, Markov Perfect equilibrium behavior in an enriched version

of the Cabral and Riordan model, which we will call the “BDK model”, while maintaining

the assumption of short-lived buyers (Besanko, Doraszelski, and Kryukov (2014) (BDK1) and

Besanko, Doraszelski, and Kryukov (2019) (BDK2)). Besanko, Doraszelski, Kryukov, and

Satterthwaite (2010) (BDKS) consider a related model where exit is not possible but a firm’s

experience can stochastically decay (“forgetting”) when it does not make a sale, consistent

1Lewis and Yildirim (2005) and Anton, Biglaiser, and Vettas (2014) provide related models where a monop-
sonist strategic buyer seeks to maintain competition between duopolist suppliers. Saini (2012) shows similar
qualitative effects in a computational model of repeated procurement.
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with the empirical evidence of forgetting identified by Benkard (2000). Forgetting and exit

both create the possibility that a rival firm will move up its cost curve in the future.

The key conclusions that these papers draw is that it is the “norm rather than the excep-

tion” (BDK1, p. 888) for these models to have multiple, and often very many, equilibria, and

that aggressive equilibria that may tend to produce sustained monopoly, and higher long-run

prices, commonly exist, and often coexist with equilibria where competition is certain to be

maintained.

The fact that the conclusions drawn from models with atomistic buyers and monopsony

can be so different raises the question of what happens when we allow for both assumptions

in the same model, and when we consider intermediate cases, with multiple forward-looking

repeat buyers. These questions are interesting theoretically, but also practically as many

of the industries where LBD has been documented, such as aircraft manufacture (Alchian

(1963), Benkard (2000)), power plants (Zimmerman (1982)), shipbuilding (Thompson (2001),

Thornton and Thompson (2001)), semiconductors (Irwin and Klenow (1994), Dick (1991))

and chemicals (Lieberman (1984), Lieberman (1987)), have at least some large and repeat

customers.2 For example, for civilian aircraft, a small number of carriers often account for a

significant share of the orders for particular models and it is common for the world’s largest

carriers and aircraft leasing companies to buy significant numbers of similar types of planes

sold by different manufacturers.3

In this paper we extend the BDK and BDKS models to allow for long-lived strategic buyers.

We assume that buyers are long-lived and we specify a single parameter (bp) that measures

each buyer’s expected share of future buyer surplus, so that the atomistic and monopsonistic

assumptions are polar cases. We study, in detail, what happens to strategies, prices and

welfare as we vary this parameter.

We find that as buyers become more strategic, equilibrium multiplicity tends to be elimi-

2Even in the case of hospital procedures (Gaynor, Seider, and Vogt (2005), Dafny (2005)) where an indi-
vidual patient may hope to only purchase the service once, their choices are influenced by physician groups
and payers that know they will be dealing with similar patients in the future.

3For example, by July 2020 242 Airbus A380s have been delivered to 14 different buyers, with a buyer-
side HHI (based on the number of aircraft sold to different airlines) of 0.239 (source, accessed July 18, 2020:
https://en.wikipedia.org/wiki/List_of_Airbus_A380_orders_and_deliveries). Details on fleets by
carrier in May 2019 reported by Air Transport World (July/August 2019 edition, pages 45-55, accessed August
16, 2020). For example, Delta’s fleet included 213 Boeing 737s and 62 Airbus A320s. Of course, some carriers,
such as Southwest are known to purchase planes from a single manufacturer (in this case, Boeing).
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nated, and that for parameters for which, with atomistic buyers, equilibria that can give rise

to long-run dominance coexist with equilibria that always result in long-run competition, it

is the equilibria with long-run competition that tend to survive. As a result, strategic buyers

tend to lower expected long-run prices, although, when both firms start at the top of their

learning curves, the net present value (NPV) of buyer welfare can be reduced when buyers

act strategically as the initial competition between sellers to gain an advantage is softened.

While these qualitative results might be expected given what we know about the incentives

of a monpsonist, we find that multiplicity can be eliminated even when buyers only expect to

receive a small proportion of future buyer surplus, which, in our framework, can be viewed as

equivalent to the buyer-side of the market being relatively unconcentrated. This elimination

of multiplicity for low levels of bp is a particular feature of our extension of the BDKS model.

One implication of existing research in which equilibria where a single firm can establish

dominance through aggressive pricing can exist, is that claims of “predatory pricing”, where a

potentially competitive firm is forced to exit, may be plausible. Claims of predation are often

hard to evaluate, and our results suggest that they may be less plausible when the buyer-side

of a market is even moderately concentrated.4

Our paper also contributes to the emerging literatures in both economics and management

science that consider how larger and more sophisticated buyers can affect how markets work

(for example, Jerath, Netessine, and Veeraraghavan (2010), Hörner and Samuelson (2011),

Board and Skrzypacz (2016), Chen, Farias, and Trichakis (2019) and, motivated by antitrust

analysis, Loertscher and Marx (2019)). In particular, we show how even limited strategic

buyer behavior affects outcomes in an infinite horizon model that has quite rich supply-side

competitive dynamics. Our results also suggest that empirical analyses of industries with LBD

where atomistic buyers have been assumed for convenience (for example, Benkard (2004) and

Kim (2014)) could give different results if strategic buyer behavior was accounted for. More

encouragingly, however, our results also suggest that allowing for strategic buyer behavior

may not only add realism to empirical analyses, but also reduce concerns that the possibility

of multiple equilibria, which is often hard to detect, may undermine the researcher’s ability

4Of course, if we added features, such as financial constraints or asymmetric information, that are not
features of the Cabral and Riordan (1994), BDKS or BDK models, or the models considered here, it may be
that predatory equilibria could re-emerge. This is an important topic for future research.
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to interpret structural counterfactuals.

We also make one methodological contribution. Much of our analysis will follow the

Besanko et al. approach of using homotopies to identify the set of equilibria. However,

homotopies are not guaranteed to find all equilibria, so one might doubt claims of uniqueness

based only on homotopies. In the context of the BDK model, we develop a novel recursive,

backwards induction algorithm that provides a way to prove whether or not equilibria where,

once a certain point in the game has been reached, exit will result in permanent monopoly,

exist. We use this approach to provide supporting evidence of equilibrium uniqueness, and,

because the results from our homotopy analysis and this method turn out to be perfectly

consistent, it also provides new evidence that the homotopy approach works in practice. We

believe that the method will also be useful in the next step of this research where we plan

to relax some of the assumptions from the earlier literature, such as the ex-ante symmetry of

buyers, that we continue to maintain in this paper.5

The rest of the paper proceeds as follows. Section 2 describes our extended version of the

BDK model and the methods used to identify equilibria. Section 3 provides the intuition for

why strategic buyer behavior of the type that we model changes equilibrium behavior using a

single set of parameters. Section 4 gives our results on existence, market outcomes and welfare

in the BDK model for a range of parameters. Section 5 presents the results for our extended

BDKS model. Section 6 concludes. The Appendices contain details of the methodology, and

some additional results and figures.

2 The Extended BDK Model

In this section we present our extended version of the BDK model. Readers should consult

BDK1 and BDK2 for additional discussion of the original model. Section 5 will describe the

differences between the BDK and the BDKS model.

5Gans and King (2002) provides an illustration of how buyer asymmetries affect results in a simpler model.
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2.1 States and Costs.

We consider an infinite horizon, discrete time, discrete state game between two ex-ante sym-

metric price-setting firms (i = 1, 2) selling differentiated products. The common discount fac-

tor is β = 1
1.05

. The state space consists of the level of “know-how” of each firm, e = (e1, e2),

with know-how observable to all players.6 For a firm that is active, ei = 1, ...,M . The BDK

model allows for a firm not to be active. An exiting firm is replaced by a potential entrant

in state ei = 0, which lives for a single period if it does not enter. The marginal cost of an

active firm i, c(ei), is κρlog2(min(ei,m)). ρ ∈ [0, 1] is known as the “progress ratio”, and a lower

number reflects stronger learning economies. When ρ = 1, marginal costs are κ for all ei.

BDK assume that m = 15 and M = 30, which implies that once a firm reaches m, additional

sales do not lower costs.

Figure 1: Within-Period Timing

a. Active firms
simultaneously

set prices

b. Buyer
makes

purchase
choice

c. Successful
seller’s

experience
increases

by 1

d. Private info.
seller entry

cost and scrap
values revealed
and entry/exit
choices made.

e. State space
evolves given

entry/exit
choices

Timing, State Transitions and Entry/Exit. Within-period timing is summarized in

Figure 1. Active firms simultaneously set prices, and then a buyer, who will be discussed

in more detail below, chooses to either buy one unit from one of the active firms or to buy

nothing. It is assumed that neither buyers nor sellers can commit to multi-period or multi-unit

contracts. The buyer’s flow indirect utility when it purchases from active firm i is vi−pi+σεi,

where εi is an iid Type I extreme value payoff shock, σ is a scaling parameter that measures

the degree of product differentiation and v1 = v2 = 10. It is assumed that the no purchase

option has v0 − p0 = 0.

6Asker, Fershtman, Jeon, and Pakes (forthcoming), Sweeting, Roberts, and Gedge (2020) and Sweeting,
Tao, and Yao (2019) consider dynamic models where serially correlated state variables are private information.
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When a firm makes a sale its know-how increases by one unit, unless it is already at M ,

in which case it remains at M . The firms receive private information draws of entry costs

and scrap values, and make simultaneous entry and exit choices. If a firm exits, it cannot

re-enter, and it is replaced by a potential entrant in the following period. Entry costs and

scrap values are drawn independently from symmetric triangular distributions, with CDFs

Fenter and Fscrap and supports [S −∆S, S + ∆S], with ∆S > 0, and [X −∆X , X + ∆X ], with

∆X > 0, respectively. The fact that the distributions have finite supports implies that when

the values of active firms are low enough or high enough, entry or exit will be certain or never

optimal. This feature will play a role in our analysis below.

2.2 Equilibrium without Strategic Buyers.

The equilibrium concept is symmetric and stationary Markov Perfect equilibrium (MPE,

Maskin and Tirole (2001), Ericson and Pakes (1995), Pakes and McGuire (1994)). An equilib-

rium can be expressed as the solution (p(e) (prices), V S(e) (beginning of period seller values),

V S,INT (e) (seller values before entry and exit costs are revealed and continuation choices are

made), λ(e) (continuation probabilities7)) to four sets of equations, with one equation from

each set for each state (e1, e2). Symmetry implies that we can write the equations for firm 1

only.

Beginning of period value for firm 1 (V S
1 ):

V S
1 (e)−D1(p(e), e)(p1(e)− c1(e1))−

∑
k=0,1,2

Dk(p(e), e)V S,INT
1 (e′k) = 0 (1)

where

Dk(p, e) =
exp(vk − pk)∑

j=0,1,2 exp(vj − pj)
, (2)

e′1 = (min(e1 + 1,M), e2), e′2 = (e1,min(e2 + 1,M)) and e′0 = (e1, e2), i.e., the states that the

game will transition to if there is a purchase from firm 1 or firm 2, or no purchase, respectively.

7BDK use the notation φ to indicate the probability that a firm does not continue, i.e., it exits or does not
enter. Therefore, to match their notation, replace λ with 1− φ.
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Value for firm 1 before entry/exit stage (V S,INT
1 ) :

V S,INT
1 (e)−

 βλ1(e)λ2(e)V S
1 (e) + βλ1(e)(1− λ2(e))V S

1 (e1, 0)+

(1− λ1(e))E(X|λ1(e))

 = 0 (3)

for e = (e1, e2) where e1, e2 > 0, with similar equations when one or both firms is a potential

entrant. E(X|λ1(e)) is the expected scrap value when firm 1 chooses to exit.

First-order condition for firm 1’s price (p1) if e1 > 0:

D1(p(e), e) +
∑

k=0,1,2

∂Dk(p(e), e)

∂p1
V S,INT
1 (e′k) + (p1(e)− c1(e1))

∂D1(p(e), e)

∂p1
= 0 (4)

Firm 1’s continuation probability in entry/exit stage (λ1):

λ1(e)− Fenter(β [λ2(e)V1 (1, e2) + (1− λ2(e))V1 (1, 0)]) = 0 if e1 = 0 (5)

λ1(e)− Fscrap(β [λ2(e)V1 (e1,max(1, e2)) + (1− λ2(e))V1 (e1, 0)]) = 0 if e1 > 0 (6)

Multiple equilibria exist when there is more than one set of values, prices and continuation

probabilities that satisfy these equations.

2.3 Equilibrium with Strategic Buyers.

We now explain how we extend the BDK model to allow for strategic buyers. Suppose that

there is a pool of 1
bp

symmetric buyers (e.g., 10 buyers if bp = 0.1). Buyers’ discount factors

are βb, although we will assume βb = β except to highlight an important difference between

bp and buyer patience. One member of the pool is chosen to be the buyer in each period, and

the chosen buyer returns to the pool at the end of the period. The flow utility of the chosen

buyer is the same as was assumed for non-strategic buyers, with buyer preferences iid across

periods and sellers. In particular, a buyer’s preferences do not depend on that buyer’s own

past consumption choices. However, a buyer will recognize that its purchase choice affects

how the state of the model may evolve.

The beginning of period buyer value (V B) is defined before nature has chosen the buyer

for the current period. To define this value it is useful to first define V B,INT , the value of a

8



buyer (whether or not they made the purchase choice this period) after the purchase decision

has been made and seller know-how has evolved, but before entry and exit choices are made.

Value for buyer before entry/exit stage (V B,INT ) :

V B,INT (e)− βb



I(e1 > 0, e2 > 0)λ1(e)λ2(e)V B(e) + ...

I(e1 = 0, e2 > 0)λ1(e)λ2(e)V B(1, e2)+...

I(e1 > 0, e2 = 0)λ1(e)λ2(e)V B(e1, 1)+...

I(e1 = 0, e2 = 0)λ1(e)λ2(e)V B(1, 1) + ...

I(e1 > 0, e2 > 0)λ1(e)(1−λ2(e))V B(e1, 0) + ...

....


= 0 (7)

where the sum is over the states that the game may transition to given entry/exit choices.

Seller symmetry implies that V B,INT (e1, e2) = V B,INT (e2, e1) and V B(e1, e2) = V B(e2, e1).

Given the definition of V B,INT , the probability that a buyer chooses seller i = 1, 2 is

Di(p, e) =
exp(vi − pi + V B,INT (e′i))∑

k=0,1,2 exp(vk − pk + V B,INT (e′k))
. (8)

with a similar formula for the outside option. V B is then defined as

Beginning of Period Buyer Value (V B) :

V B(e)− bp log

( ∑
k=0,1,2

exp
(
vk − pk + V B,INT (e′k)

))
− (1− bp)

∑
k=0,1,2

Dk(p(e), e)V B,INT (e′k) = 0,

(9)

where bp is the probability that a buyer in the pool is the chosen buyer in the current period,

in which case its value reflects the current and future surplus of its purchase choice. The value

of a buyer that is not chosen is the weighted sum of the V B,INT s, with the weights reflecting

the probability that the chosen buyer makes different purchase choices.

Discussion. The model is equivalent to the original BDK model if bp = 0, with V B =

V B,INT = 0. If bp = 1, there is a monopsonist who can buy one unit every period. Our

presentation assumed that bp takes on values where 1
bp

is an integer. However, bp is also equal

9



to the share of discounted future buyer surplus that a buyer expects to receive and, if we

have a behavioral interpretation of the parameter, we can also consider values of bp > 0.5 or

values where 1
bp

is not an integer, which will be a natural interpretation when we change bp

continuously.

We will illustrate that one should not interpret variation in bp as variation in buyer pa-

tience.8 Even though equilibrium seller behavior will be the same when bp = 0 or buyers are

myopic (βb = 0), an increase in βb changes the relative weight that a buyer places on surplus

in future periods in a way that an increase in bp does not.

2.4 Methods for Finding Equilibria and their Classification

BDK and BDKS use two computational approaches to find equilibria. The first approach fol-

lows Pakes and McGuire (1994) who use an iterative algorithm, where optimal prices/continuation

probabilities are computed and values are updated in each step, to find an equilibrium. Their

second approach uses homotopies, which are essentially applications of the implicit function

theorem to the system of equations that define an equilibrium, to trace equilibrium corre-

spondences through the strategy and value space as a single parameter is varied, starting

from an equilibrium found by the Pakes-McGuire algorithm or a different homotopy. An “α-

homotopy” is a homotopy where the equilibrium is traced varying parameter α. An advantage

of the homotopy approach is that it can identify equilibria that, because of the failure of local

stability conditions, cannot be found using the Pakes-McGuire algorithm unless one started

exactly at the equilibrium. However, even when the homotopy approach is applied repeatedly

and different parameters are varied, it is not guaranteed to find all equilibria.9 Therefore, if

homotopies find only one equilibrium for given parameters, it is unclear how confidently a

researcher should claim that the equilibrium is unique.

In this paper we also make use of the homotopy approach, with our implementation de-

tailed in Appendix A.10 However, we also use an additional approach that can prove whether

8A question from David Besanko made us realize that a patience interpretation was inappropriate.
9For example, BDK1, page 880: “Although it cannot be guaranteed to find all equilibria, the advantage

of this method is its ability to explore the equilibrium correspondence and search for multiple equilibria in a
systematic fashion.”

10Some of our numerical choices (e.g., tolerances) may differ from those of BDK or BDKS, but our results
are almost identical when bp = 0.
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particular types of equilibrium exist, as it helps to support our claims that equilibria are

unique. In particular, we consider the following two types of equilibria.

Definition An equilibrium is accommodative if λ1(e1, e2) = λ2(e1, e2) = 1 for all states

(e1, e2) where e1 > 0 and e2 > 0.

Definition An equilibrium has the“Some Exit Leads to Permanent Monopoly” (SELPM)

property if there is some e = (e1, e2) where e1 > e2 > 0, and (i) λ2(e) < 1, (ii) λ2(e
′
1, 0) = 0

and λ1(e
′
1, 0) = 1 for all e′1 ≥ e1, and (iii) λ1(e

′
1, e
′
2) = 1 for all e′1 ≥ e1, e

′
2 ≥ e2.

BDK2 define accommodative equilibria in the same way. In these equilibria a game starting

at state (1, 1) must end up at (M,M), and then stay in that state, with both firms at the

bottom of their cost curves. Equivalently, the ergodic distribution consists only of (M,M). It

is straightforward to check if an accommodative equilibrium exists by solving for equilibrium

prices assuming no exit, and then verifying that no exit is optimal. As described in Appendix

B, by examining the best response price functions in each state, we are confident that at most

one accommodative equilibrium can exist.

Our definition of SELPM equilibria is new. The key feature of a SELPM equilibrium is that

from the duopoly state e the game either will transition to permanent monopoly, following

exit, in which case it will end up in states (M, 0) or (0,M), which will be absorbing, or will

remain in permanent duopoly, with (M,M) as an absorbing state. In lower know-how states,

exit and re-entry is possible. Appendix B describes an algorithm that will be able to identify

a state e, if one exists, as long as we are able to solve for all equilibria in a given state for a

given set of buyer and seller continuation values if the state was to change.11 An extended

version of this algorithm can also be used to identify the existence of equilibria where any exit

in the game will lead to permanent monopoly (AELPM) (the formal definition of an AELPM

equilibrium is provided in Appendix B). All AELPM equilibria are SELPM.

It is straightforward to check whether an equilibrium found by a homotopy is accommoda-

tive or SELPM. For the parameters that we consider, all of the equilibria that we identify in

11Our algorithm follow paths consistent with the definition of a SELPM equilibrium, starting in the absorbing
states, until we find a state e or determine that no such state exists. This does not involve solving for
equilibrium strategies in the whole game, so it does not provide a method for counting the number of SELPM
equilibrium. The structure of the game implies that there will always be positive probability of reaching e if
the game starts in state (1, 1) and that equilibrium strategies for lower know-how states that are consistent
with the existence of state e will exist.

11



the extended BDK model are either accommodative or SELPM as long as exit is never optimal

in state (M,M) (i.e., when both firms are at the bottom of their learning curves).12 Therefore

when we find that, for particular parameters, an accommodative equilibrium exists and no

SELPM equilibria exist, without relying on homotopies, this provides fairly convincing, and

new, evidence that the accommodative equilibrium is likely to be the only equilibrium in the

full game.13 One might also argue that policy analysis should be particularly concerned with

equilibria where permanent monopoly could be established.

3 The Effects of Strategic Buyers in the Extended BDK

Model: An Illustration

In this section, we examine what happens if we vary bp when σ = 1 and ρ = 0.75 (“the

illustrative parameters”).14 BDK1 argue that these parameters are empirically plausible even

though they are not intended to represent any particular industry. We assume βb = β = 1
1.05

unless otherwise noted.

3.1 Three Baseline Equilibria for bp = 0

There are three equilibria that can be supported for these parameters. Table 1 reports the

strategies for a subset of states. The three equilibria differ only in strategies where one or

both firms have not made a sale, i.e., where at least one e is equal to 0 or 1. Two of the

equilibria involve some positive probability of exit by a firm with ei = 1, and they involve low

equilibrium prices in these states. Intuitively, when a rival that has not made a sale may exit,

a firm has an incentive to set a low price to make sure that the rival does not make a sale,

12If scrap values can be very high and marginal costs in state M are high enough (i.e., there is little learning-
by-doing), there will be some possibility of exit in state (M,M). The assumption that scrap values are drawn
from a triangular distribution with limited support is therefore important. If we considered parameters
where entry costs could be very low, re-entry might always be optimal and there would never be permanent
monopoly. Some non-accommodative equilibria would therefore not be SELPM if we considered a broader set
of parameters.

13Of course, we are not claiming to be first in using a recursive algorithm to prove the properties of equilibria
in a dynamic model with LBD. Cabral and Riordan (1994) and BDKS use backwards induction to prove
uniqueness when there is no possibility of exit and no forgetting respectively. However, our use of this type of
algorithm to prove whether or not a particular type of equilibrium with exit exists, is, we believe, new.

14For the remaining parameters: κ (cost the top of the learning curve) is 10, X (scrap value) has a symmetric
triangular distribution on [0, 3], S (entry cost) has a symmetric triangular distribution on [3, 6].
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and, in turn, this can make exit more attractive.

Long-run outcomes can be measured by the expected long-run HHI (HHI∞) implied by

firm strategies assuming that the game begins in state (1,1). BDK define HHI∞15 as

HHI∞ =
∑

e≥(0,0)

µ∞(e)

1− µ∞(0, 0)
HHI(e) where HHI(e) =

∑
i=1,2

(
Di(p, e)

D1(p, e) +D2(p, e)

)2

and µ∞(e) is the probability that the game is in state e in the ergodic distribution. The

long-run expected average price (P∞) can be defined in a similar way.

In any accommodative equilibrium, the ergodic distribution contains only state (M,M) so

HHI∞ = 0.5 and P∞ = 5.24 . The other equilibria are SELPM, so the ergodic distributions

contain states (M,M), (M, 0) and (0,M) only, and HHI∞ and P∞ depend only on the

probabilities of these states in each equilibrium, as equilibrium prices in absorbing states do

not depend on bp (the optimal buyer strategy is to act statically). The Mid-HHI equilibrium

is AELPM, as only a laggard exits and there is no re-entry against an incumbent.16

3.2 Equilibrium Outcomes as bp Varies

Figure 2 shows the values of HHI∞ and P∞ implied by the equilibria on the bp-homotopy

paths from each of the baseline equilibria. The High- and Mid-HHI baseline equilibria lie at

two ends of a single path that does not extend beyond bp = 0.142. All of the equilibria on

this path are SELPM. On the other hand, the equilibria on the path from the accommodative

baseline equilibrium are all accommodative.

As noted above, one might wonder if there are additional equilibria with exit on discon-

nected sections of the equilibrium correspondence. We use our recursive algorithm to test for

the existence of SELPM equilibria when we increase bp from 0 to 1 in steps of 0.01. We find

that no SELPM equilibria exist for bp ≥ 0.15, consistent with the homotopies identifying all

equilibria.

Figure 3 shows what the equilibria on the homotopy paths imply for the net present values

of consumer and total surplus, for games starting in (1,1).17 The net present values are

15In practice, BDK1 calculate HHI∞ based on the probability distribution of states after 1,000 periods (see
BDK1, p. 883). We use the actual limiting distribution.

16The High-HHI equilibrium is not AELPM, as there is a small probability that both firms exit in (1,1).
17BDK1 calculate welfare assuming that the game starts in state (1,1), whereas BDK2 calculate welfare
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Figure 2: Extended BDK Model: Equilibrium Expected Long-Run HHI and Price as a Func-
tion of bp for the Illustrative Parameters. The black line traces the homotopy path from the
Accommodative (A) baseline equilibrium. The red line traces the overlapping paths from the
High-HHI (H) and Mid-HHI (M) baseline equilibria.

(a) Expected Long-Run HHI (HHI∞). (b) Expected Long-Run Prices (p∞)

Figure 3: Extended BDK Model: Equilibrium Expected NPV of Welfare as a Function of bp for
the Illustrative Parameters. The black line traces the homotopy path from the Accommodative
(A) baseline equilibrium. The red line traces the overlapping paths from the High-HHI (H)
and Mid-HHI (M) baseline equilibria.

(a) Total Surplus (b) Consumer Surplus
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affected both by long-run variety and prices (better in accommodative equilibria) but also the

intensity of competition to gain an advantage in the initial periods of the game. Total surplus

is highest in the accommodative equilibria. On the other hand, consumer surplus is maximized

in the baseline Mid-HHI equilibrium, although it is lowest in the High-HHI equilibrium, where

monopoly is likely to be quickly established. Therefore, the type of equilibrium that tends to

exist when buyers act strategically is not necessarily the best equilibrium for buyers. We will

see that initial prices in an accommodative equilibrium tend to increase with bp, causing both

measures of surplus to fall.

Appendix C.1 explores the welfare patterns by examining what happens to the number

of sales and production costs, in the long-run and in the first ten periods of the game. Even

though one firm is likely to exit, surplus is highest in the High-HHI equilibrium in the first

ten periods because duopoly prices are so low.

3.3 Effect of Changes in bp on Equilibrium Strategies and Dynamic
Incentives

To explain these changes in the existence of different types of equilibria, outcomes and welfare,

we focus on what happens in a single state, (3, 1). In the SELPM baseline equilibria, if firm

2 makes the sale in this state, there will be permanent duopoly, and future play will be the

same as in the accommodative equilibrium, whereas if firm 1 makes the sale or no sale occurs,

firm 2 may exit and monopoly may result. A buyer in this state can therefore play a pivotal

role in how the market develops, i.e., there is some probability that the long-run outcome will

be duopoly only if it buys from firm 2. In an accommodative equilibrium, the buyer can make

the firms more symmetric by buying from firm 2, but cannot affect long-run market structure.

Figure 4(a) shows how the demand for firm 1 (the leader) changes with bp when we hold

seller pricing and exit strategies (in all states) fixed at their baseline bp = 0 equilibrium values,

so that the changes in demand simply reflect the incentives of a buyer to affect how the game

evolves.18 We see that the probability of purchasing from firm 1 falls as bp rises in all of the

assuming the game starts in state (0,0), so that initial entry costs are included and the possibility that there is
never duopoly is accounted for. While both measures are interesting, we focus on NPV measures assuming that
the game starts in (1,1) as antitrust analysis is typically focused on settings where there is actual competition
during the initial stages of an industry’s development.

18When we vary p1, the players assume that p1 will have its baseline equilibrium value if the game is in
state (3,1) in any future period. p2 is held fixed at its baseline equilibrium value.
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equilibria, but that the falls are especially dramatic in the High-HHI equilibrium, even for low

values of bp. For example, the probability that firm 1 makes the sale falls from 0.973 to 0.695

as bp increases from 0 to 0.1.

To understand how shifts in demand in future states affects a seller’s dynamic incentives,

we follow BDK in defining two components of a seller’s continuation values in a particular

state.

Definition The advantage-building incentive for firm 1 is V S,INT
1 (e1+1, e2)−V S,INT

1 (e1, e2).

The advantage-denying incentive for firm 1 is V S,INT
1 (e1, e2)− V S,INT

1 (e1, e2 + 1).

The advantage-building incentive therefore measures the increase in a firm’s continuation

value when it makes a sale, compared to neither firm making a sale. The advantage-denying

incentive measures the increase in the continuation value from no sale compared to the rival

making a sale. BDK1 show that the advantage-denying incentive is important in sustaining

equilibria with exit or high values of HHI∞.19

Figure 4(b) shows these dynamic incentives for firm 1 in state (3,1) as a function of bp

holding seller strategies fixed at their baseline equilibrium values, so that changes reflect only

how buyer behavior affects the evolution of the game. Even though firm 2’s exit probabilities

are not changing, the advantage-denying incentive in the High-HHI equilibrium falls rapidly

with bp, reflecting how a strategic buyer is more likely to buy from firm 2, if it does not exit,

in future periods. The other incentives, which are much smaller, decline only slightly, and

more linearly, as bp rises.

The remaining parts of the figure examine how equilibrium strategies and dynamic incen-

tives change (i.e., when we allow for both buyer and seller strategies to adjust) along the bp

homotopy paths from the baseline equilibria. Figure 4(c) shows the probability that firm 2

will continue in state (4,1), i.e., the probabilities associated with firm 2’s exit choice when firm

1 makes the sale in state (3,1). Figure 4(d) shows the equilibrium prices of both firms in state

(3,1). Figure 4(e) shows the equilibrium advantage-building and denying incentives for firm

1. As bp increases from zero, firm 1’s equilibrium price initially falls sharply when we follow

the path from the High-HHI equilibrium. As the advantage-denying incentive is declining,

19See, for example, Figure 3 (middle panel) in BDK1 where the surviving equilibria are accommodative
when the advantage-denying incentive (Definition 2) is removed.
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partly because firm 2 is less likely to exit, and the advantage-building incentive is almost flat,

the fall in price reflects the decline in demand in state (3,1) as a strategic buyer becomes

more likely to buy from firm 2. When the advantage-denying incentive is small enough, the

incentive to maintain a price that is significantly below marginal cost disappears, and this

type of equilibrium can no longer be sustained.

Figure 4(f) shows the equilibrium dynamic incentives of a strategic buyer, measured by the

change in the chosen buyer’s continuation values when, compared to not buying, it buys from

firm 1 (V B,INT (4, 1)− V B,INT (3, 1)) or firm 2 (V B,INT (3, 2)− V B,INT (3, 1)). These incentives

are zero in all of the equilibria when bp = 0. On the other hand, as bp rises, the dynamic

incentive to buy from firm 2 increases sharply in the non-accommodative equilibria, while

there is a a dynamic disincentive to buy from firm 1. In an accommodative equilibrium there

is a positive dynamic incentive to buy from either firm as this lowers future costs and prices,

although the incentive to buy from firm 2 is greater. The positive dynamic incentives, which

raises demand for both firms, explains why equilibrium prices increase on the path from the

accommodative baseline equilibrium.

3.4 Comparison to Variation in Buyer Discount Factor

One might expect that an increase in bp would have a similar effect on equilibrium outcomes

to making a monopsonist buyer more patient (i.e., increasing βb when bp = 1). Increasing

either bp or βb causes buyers to place more weight on future surplus, but changes in βb also

affect the relative weight placed on surplus in different future periods. As a result, changes in

βb and bp can affect what happens in different ways, even though equilibrium strategies when

βb = 0 or bp = 0 are identical.

We can illustrate this difference using our state (3,1) example. In the High-HHI equilib-

rium, firm 1’s price in state (4,1) is even lower than its price in state (3,1). Therefore when βb

increases from zero, a monopsonist buyer may actually shift its demand towards firm 1 even

though this increases the probability of long-run monopoly. This is illustrated in Figure 5(a),

which can be compared to Figure 4(a) as seller strategies are the same in both cases. Using

High-HHI or Mid-HHI seller strategies, demand for firm 1 is higher when βb = 0.7 than when

βb = 0. In contrast, demand was lower for firm 1 for all bp > 0. This type of demand shift

19



Figure 5: Extended BDK Model: Inverse Demand Curves For Seller 1 in State (3,1) and Equi-
librium Expected Long-Run HHI as a Function of βb (bp = 1) for the Illustrative Parameters.
In panel (a) seller strategies are held at baseline equilibrium levels. The paths in panel (b)
are traced by βb-homotopies.

(a) Inverse Demand for Firm 1 (b) Equilibrium HHI∞

implies that the equilibrium dynamic incentive for a seller to set a low price may increase

when bp increases.20

Figure 5(b) shows the HHI∞ values implied by the equilibria traced by βb-homotopies

from the baseline equilibria. Non-accommodative equilibria exist until βb is almost equal to

β, in contrast to how multiplicity is eliminated for quite low bp.

We assume that βb = β and we will vary bp in the rest of this paper. This is because we

think of industries with LBD as typically having a number of long-lived buyers, each of whom

accounts for only a share of current and future demand, but who may care about the future

just as much as the sellers. This situation is more closely approximated by a model where

βb = β and bp > 0.

4 Results for the Extended BDK Model Across Values

of ρ and σ

We now examine what happens when we look across values of ρ, the progress ratio, which

determines the extent of LBD, and σ, which measures the degree of product differentiation,

20In fact, when we calculate the advantage-denying incentives for firm 1, with fixed seller strategies, it
increases until βb is 0.8 for the Mid-HHI equilibrium and until βb is 0.7 for the High-HHI equilibrium.
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Figure 6: Extended BDK Model: Equilibrium Expected Long-Run HHI (HHI∞) on σ-
Homotopy Paths for Different bp, with Other Parameters at their Illustrative Values.

(a) bp = 0 (b) Full Range of bp

with other parameters fixed at their illustrative values. When product differentiation falls,

equilibrium duopoly profits tend to shrink, which tends to lead to more exit. When ρ falls,

there are two effects. First, lower costs tend to increase duopoly profits, making exit less

attractive. On the other hand, a firm that makes initial sales gains a larger cost advantage,

which may increase the probability that the laggard exits.

4.1 Long-Run Market Structure and Multiplicity of Equilibria

Figure 6(a) (which matches BDK1 Figure 2, Panel B) shows the HHI∞ implied by the

equilibria on the σ-homotopy path when bp = 0 and ρ = 0.75.21 The other parameters

are held at their illustrative values. When σ > 1.12 (high differentiation), there is only an

accommodative equilibrium (HHI∞ = 0.5), but otherwise at least one equilibrium exists

where a firm may exit and the market can end up as a permanent monopoly. For σ < 0.9,

all of the equilibria have a high probability of monopoly (HHI∞ very close to 1), and, as

a result of the homotopy path bending back on itself (in a way that cannot be seen in the

figure), there can be many equilibria. For example, for σ = 0.8 there are 23 equilibria, all

with HHI∞ ≥ 0.95.22 All of the equilibria computed with HHI∞ > 0.5 are SELPM.

Figure 6(b) shows that, as bp increases, the σ-homotopy paths unwind, reducing multiplic-

21The path begins at σ = 1.3 where we find the equilibrium by solving the equilibrium equations.
22Prices are identical in all of these equilibria for (e1 > 6, e2 > 6) because there is no exit in these states.
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Figure 7: Extended BDK Model: Equilibrium Expected Long-Run HHI (HHI∞) on ρ-
Homotopy Paths for Different bp, with Other Parameters at their Illustrative Values. Panel
(b) classifies the equilibria into accommodative, AELPM and non-AELPM SELPM types,
distinguishing within the latter two groups based on whether the equilibrium satisfies BDK2’s
definition of an aggressive equilibrium.

(a) Full Range of bp (b) Classification

ity. Accommodative equilibria can be supported for lower σ. When bp ≥ 0.9, a high value, no

equilibria has an HHI∞ close to 1 for any σ ≥ 0.5.

Figure 7(a) presents a similar figure for ρ-homotopy paths for different level of bp (the

bp = 0 plot matches BDK1 Figure 2, Panel A), with the other parameters at their illustrative

values, including σ = 1. Moving from left to right in the figure is associated with larger LBD

effects. For all ρ and for all bp, there is an accommodative equilibrium (HHI∞ = 0.5) (i.e.,

for each bp there is a line that follows the red line in the figure), while, for bp = 0 and ρ ≤ 0.8,

there are also equilibria where exit occurs and the SELPM equilibrium correspondence has

(in this dimension) two disconnected loops. As bp increases, the geometry changes. The loops

with the highest HHI∞ are eliminated as soon as bp ≥ 0.05, and the loops covering lower

values of HHI∞ contract to cover a smaller range of ρ, disappearing entirely for bp > 0.3 so

that, for all ρ, only a unique accommodative equilibrium exists.

Figure 7(b) classifies the equilibria into accommodative, AELPM and non-AELPM SELPM

equilibria, where the latter two groups are also broken down into whether the equilibrium
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meets BDK2’s definition of an aggressive equilibrium.23 Appendix C.2 shows a similar classi-

fication for the σ-homotopy equilibria, and two patterns hold in both plots. First, all of the

equilibria are either accommodative or SELPM (i.e., for these parameters the classificiation

is exhaustive). In contrast, there are equilibria that are neither accommodative nor aggres-

sive (i.e., some are unclassified using the aggressive/accommodative classification). Second,

AELPM equilibria tend to have lower HHI∞ values than non-AELPM SELPM equilibria, a

result which is worth briefly explaining. In equilibria where duopoly prices are exceptionally

low, monopoly is very likely to result (HHI∞) but it is also possible that firms will want to

exit in symmetric states with low know-how. In this case, exit may be followed by re-entry,

because both firms could leave at the same time, and these equilibria will not be AELPM,

but can be SELPM.

If all equilibria are accommodative or SELPM, a claim consistent with our classification of

the homotopy equilibria, then our recursive algorithm can prove whether an accommodative

equilibrium is the unique equilibrium. Figure 8 shows the results of applying the algorithm

for a grid of values, in steps of 0.05, of (ρ, σ) for different levels of bp. The only gridpoints

for which neither accommodative nor SELPM equilibria exist are (ρ = 1, σ ≤ 0.65), where

there is little product differentiation and no LBD, so that firms always have high costs. For

these parameters, equilibrium profits are low in every state and there can be exit even in state

(M,M).

For the remaining combinations of parameters, there is a clear pattern. For bp = 0,

accommodative and SELPM equilibria co-exist over a wide range of the parameter space.

Accommodative equilibria are unique only when there is a lot of product differentiation or

LBD is limited (and differentiation is not too low).24 As bp increases, the range of parameters

with a unique accommodative equilibrium expands, whereas the range that supports SELPM

equilibria shrinks. The changes are most dramatic for low ρ: for example, when ρ = 0 (costs

fall from 10 to zero with one sale), SELPM equilibria can be supported for σ ≤ 1.05 with

bp = 0, but the threshold falls to σ ≤ 0.85 when bp = 0.3. For the highest levels of bp, SELPM

equilibria only exist when product differentiation is limited, and SELPM and accommodative

23The equilibrium is aggressive if p1(e) < p1(e1, e2 + 1), p2(e) < p2(e1, e2 + 1), and λ2(e) < λ2(e1, e2 + 1) for
some state e = (e1, e2) > (0, 0) with e1 > e2, where λ is the probability of continuing. Recall that AELPM
equilibria are SELPM equilibria where any exit from duopoly results in permanent monopoly.

24See Appendix B for a discussion of the evidence that there is only ever a single accommodative equilibrium.
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equilibria co-exist only for a narrow range of parameters.

4.2 Prices and Welfare

We now consider what happens to equilibrium prices and welfare as bp increases. Figure 9

presents expected long-run prices and the net present value of consumer surplus and total

surplus for σ-homotopy plots, with ρ = 0.75, and ρ-homotopy plots, with σ = 1. For the

ρ-homotopy plots, we measure welfare relative to the unique (accommodative) equilibrium

when bp = 1 because the changes in the level of surplus caused by variation in marginal costs

with ρ would otherwise dominate the figures. We also draw the welfare plots for a subset

of values of bp in order to reduce how many times lines cross, and we distinguish between

accommodative equilibria (solid lines) and SELPM equilibria (dashed lines).

Consistent with the illustrative example, when parameters support both accommodative

and SELPM equilibria, total surplus is maximized, and long-run prices are minimized, in the

accommodative equilibrium. BDK2 conclude that equilibria tend to be quite efficient in the

original BDK model, and this conclusion would appear to be strengthened when we allow

for strategic buyer behavior to eliminate non-accommodative equilibria. Consumer surplus in

an accommodative equilibrium tends to lie between the minimum and maximum consumer

surplus of the SELPM equilibria, which is also consistent with the example. For any ρ or σ,

increasing bp tends to lower the NPV of consumer surplus in accommodative equilibria, as

initial price competition is softened. It also tends to reduce total surplus when ρ ≤ 0.9. On

the other hand, when 0.9 < ρ < 1, total surplus can increase in bp because marginal costs

are high, and without strategic behavior there is a reasonably high probability that no sale

will be made when a sale would be efficient. As a strategic buyer will be more likely to buy

in lower know-how states to reduce future costs, this inefficiency can be offset.25 When both

σ and bp are small, there are many SELPM equilibria, but, because permanent monopoly is

likely to arise quickly in all of them, they lead to very similar expected welfare numbers.

25For example, when ρ = 0.925 and bp = 0.2, the probability that the buyer chooses the outside option in
state (1, 1) is around 0.272. When bp = 1, this probability falls to 0.241 (a 10% decrease).
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5 Results for the Extended BDKS Model

A feature of SELPM equilibria in the BDK model is that there are states where a buyer can

guarantee long-run competition by making a particular purchase choice, providing a strong

incentive for a strategic buyer to shift its demand even if it expects to receive a relatively

small share of future surplus. We now consider the BDKS model, where there is no entry or

exit, know-how can depreciate stochastically and a single purchase can never guarantee that

competition will be sustained permanently. We find that, contrary to what one might expect,

strategic buyer behavior eliminates multiplicity even more dramatically in this model.

5.1 Differences Between the BDKS and BDK Models

In the BDKS model there are always two active firms, with no entry or exit decisions. Once

the buyer has made its purchase choice, which, unlike the BDK model, does not include an

option not to purchase, know-how evolves according to

ei,t+1 = min(M,max(ei,t + qi,t︸︷︷︸
≡1 if i makes sale

− fi,t︸︷︷︸
≡1 if i forgets︸ ︷︷ ︸

indicators

, 1))

where fi,t is equal to one with probability ∆(ei) = 1− (1− δ)ei where δ ∈ [0, 1] parameterizes

the forgetting rate. σ is assumed to be equal to 1, with (ρ, δ) as the main parameters of

interest. A central insight of the BDKS paper is that, because forgetting can move a firm

up its cost curve, an increase in the rate of forgetting can have a quite different effect on

equilibrium strategies than weaker learning-by-doing.

5.2 BDKS Equilibria for Illustrative Parameters

Table 2 reports strategies for a subset of states for three equilibria identified when bp = 0,

ρ = 0.75 (facilitating comparison with our BDK example) and δ = 0.0275. We will use

these parameters in some of our discussion below.26 The table also reports the state-specific

26Appendix C will report some corresponding analysis for ρ = 0.85 and δ = 0.0275 which is one of the
parameter values that BDKS focus on in their analysis. For these parameters there are two equilibria, which
is unusual, and one of them is characterized as “flat with well”, in the sense that the pricing functions are
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Table 2: Equilibria in the BDKS Model for δ = 0.0275, ρ = 0.75 , bp = 0.

Sideways Trench Sideways Trench Diagonal Trench

HHI∞ = 0.5000260 HHI∞ = 0.5000259 HHI∞ = 0.5209345
e1 e2 c1 c2 ∆1 ∆2 p1 p2 p1 p2 p1 p2
1 1 10 10 0.028 0.028 -4.12 -4.12 -4.10 -4.10 -3.25 -3.25
2 1 7.50 10 0.054 0.028 4.86 7.52 4.86 7.52 5.05 7.65
2 2 7.50 7.5 0.054 0.054 2.87 2.87 2.87 2.87 0.21 0.21
3 1 6.34 10 0.080 0.028 6.22 8.87 6.22 8.87 6.61 8.96
3 2 6.34 7.5 0.080 0.054 4.13 5.38 4.13 5.38 3.84 5.81
3 3 6.34 6.34 0.080 0.080 4.61 4.61 4.61 4.61 1.34 1.34
4 1 5.63 10 0.106 0.028 6.31 8.91 6.31 8.91 6.72 8.83
4 2 5.63 7.50 0.106 0.054 4.65 6.01 4.65 6.01 5.29 7.01
4 3 5.63 6.34 0.106 0.080 4.71 5.25 4.71 5.25 3.63 5.35
4 4 5.63 5.63 0.106 0.106 4.93 4.93 4.94 4.94 1.67 1.67
10 1 3.85 10 0.243 0.028 6.07 8.58 6.07 8.58 6.20 8.04
10 2 3.85 7.5 0.243 0.054 4.91 6.05 4.91 6.05 5.59 6.39
10 3 3.85 6.34 0.243 0.080 5.15 5.83 5.15 5.83 5.69 6.27
10 8 3.85 4.22 0.243 0.200 4.99 5.13 4.99 5.13 4.35 5.73
10 9 3.85 4.02 0.243 0.222 5.01 5.07 5.01 5.07 3.15 4.41
10 10 3.85 3.85 0.243 0.243 5.04 5.04 5.04 5.04 2.44 2.44
29 1 3.25 10 0.555 0.028 5.90 8.37 5.90 8.37 5.60 7.51
29 2 3.25 7.5 0.555 0.054 4.81 5.79 4.81 5.79 5.06 5.66
30 1 3.25 10 0.567 0.028 5.90 8.37 5.90 8.37 5.66 7.60
30 2 3.25 7.5 0.567 0.054 4.81 5.79 4.81 5.79 5.07 5.72

Notes: ci, pi, ∆i are the marginal costs, equilibrium price and probability of forgetting for firm i. HHI∞

is the expected long-run value of the HHI.

probabilities that a firm forgets (∆). Firms set negative prices in state (1,1) in all of the

equilibria as they compete to get an advantage. The equilibria differ in strategies (and values)

in all states, rather than just in a subset of states with low know-how, because, for δ > 0,

there is always the possibility that the game will eventually transition to any other state in

any equilibrium. The same logic implies that there are no absorbing states.

The first two equilibria, which have very similar prices except in state (1, 1), are charac-

terized by a “sideways trench” where the price of the leading firm drops when its rival moves

from ej = 1 to ej = 2, but then, if the laggard gains additional know-how, the leader’s price

increases even though the laggard’s costs are falling. In the third equilibrium, the firms set

low prices when they are symmetric (i.e., when a sale may cause leadership to switch from

one firm to the other) and we describe this equilibrium as a “diagonal trench”. Despite the

relatively flat across the know-how space except that the firms set much lower prices in state (1,1).
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differences in the strategies, each of the equilibria has an unconcentrated market structure in

the long-run.27

Figure 10(a) and (b) shows the HHI∞ and P∞ values implied by the equilibria on bp-

homotopy paths from the baseline equilibria. The diagonal trench and one of the sideways

trench equilibria are connected on a single path which does not pass bp = 0.068. On the

other hand, the path from the other sideways trench equilibrium continues to bp = 1, with

HHI∞ remaining very close to 0.5. In contrast to the BDK model, P∞ varies as bp increases

as equilibrium price levels in all states, and the probability that the game is in a particular

state, change continuously.

Figure 10(d) and (e) shows how firm 1’s demand and its incentives change in state (3,1),

holding seller prices in all states fixed at their bp = 0 equilibrium values.28 As the sideways

trench equilibria are so similar, we only show one demand picture. In both cases, there is a

noticeable shift of demand away from firm 1 as bp rises, and they are larger than the shifts in

the Mid-HHI and accommodative equilibria in our BDK example. For bp = 0 the advantage-

denying incentives in all of the equilibria are large relative to the advantage-building incentives,

and they fall significantly as bp rises.29 On the other hand, and unlike in our BDK example,

the advantage-building incentives increase for low values of bp.30 The decrease in demand and

the increase in the advantage-building incentive both contribute to the initial decrease in firm

1’s equilibrium price as bp rises (Figure 10(c)).

27In the BDK model, for all of the equilibria that we consider in this paper, the long-run HHI is either 0.5
or 1, and HHI∞ is equal to the weighted average of these outcomes. In the BDKS model all states have
positive probability in the long-run when δ > 0.

28Even though buyers do not have the option to purchase in the BDKS model, we continue to define the
advantage-building incentives as the difference between firm 1’s continuation values when firm 1 makes a sale
and the continuation value if there was to be no sale, and the advantage-denying incentive as the difference
between firm 1’s continuation value if there was to be no sale and the value if firm 2 makes the sale.

29While it is obviously not straightforward to compare the incentives across two different models, it is
noticeable that the level of the advantage-denying incentive when bp = 0 is lower in these equilibria than
in the High-HHI equilibrium of the BDK model, reflecting the fact that, in the BDKS model, there is no
possibility of firm 1 gaining a permanent monopoly position.

30The most obvious intuition for this result is that the probability that a strategic buyer will buy from the
laggard is decreasing when the leader has more know-how, because the buyer will expect it is more likely
to want to buy from the leader in future periods, and this may make the accumulation of know-how more
valuable for the leader as bp increases. On the other hand, once buyers are quite strategic, the probability
that the leader will be able to maintain a significant advantage will fall, decreasing the advantage-building
incentive.
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Figure 11: Extended BDKS Model: Number of Equilibria for bp = 0

5.3 Existence of Multiple Equilibria in the Extended BDKS Model

As there are no absorbing terminal states when δ > 0, it is not possible to use a recursive

algorithm to establish whether equilibria of a particular type exist.31 We therefore follow

BDKS in identifying the set of equilibria by using a sequence of δ- and ρ-homotopies to criss-

cross the parameter space for different discrete values of bp. We also check that our results

are consistent with bp-homotopies that begin from multiple equilibria identified when bp = 0.

The details of our implementation of the homotopy algorithm are given in Appendix A.

Figure 11 shows the number of equilibria that we identify when bp = 0 for different (ρ,

δ). Even though the gridpoints may not be exactly the same, the figure is almost exactly

identical to BDKS’s Figure 2 except in a small area where ρ > 0.97 and δ is around 0.04,

where we identify some additional equilibria. There are multiple equilibria for a range of

values of ρ when δ lies between 0.02 and 0.15, values that imply probabilities of forgetting

when ei = m = 15 of 0.26 and 0.91 respectively. When the probability of forgetting is above

0.5, it is not possible, even for a strategic monopsonist, to maintain both firms at the bottom

of their learning curves for a sustained period.

31If δ = 0, backwards induction can be used to prove uniqueness of an equilibrium. The argument is similar
to the one that we describe for accommodative equilibria in the BDK model in Appendix B, but it is simplified
because one firm must make a sale.
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Figure 12: Extended BDKS Model: Number of Equilibria for bp > 0

(a) bp = 0.01 (b) bp = 0.05

(c) bp = 0.1 (d) bp = 0.2

Figure 12 show the number of equilibria for the same gridpoints for bp equal to 0.01, 0.05,

0.1 and 0.2. We find no multiplicity when bp = 1, so we do not show that figure. While there

are a few parameters that have more equilibria when bp = 0.05 than when bp = 0, the general

pattern is that multiplicity is eliminated quite rapidly as bp rises. When bp = 0.1 multiplicity

is common only in a small sliver of the parameter space which is associated with parameters

that are quite extreme in the sense they imply dramatic LBD (ρ = 0.2 implies that c(1) = 10

and c(2) = 2) and a high probability of forgetting (if δ = 0.1, a firm with ei = 5 forgets with

probability 0.41).32 For bp = 0.2 we only find multiplicity for some extremely high values of δ

32We also identify a few gridpoints with multiplicity around δ = 0.1 and ρ = 0.92, and δ = 0.97 and ρ = 0.35.
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where it is unlikely that a firm will be able to get more than one step down the cost curve.

Appendix C.4 presents two bp-homotopy plots that are consistent with the typical elimination

of equilibria as bp rises and the existence of examples where the number of equilibria can

increase for low bp.

5.4 Market Structure, Price and Welfare

Figure 13 shows how expected long-run market concentration and average prices, and the

NPV of consumer and total surplus, measured relative to surplus when bp = 1, for a game

starting at (1,1), vary with δ and bp, based on δ-homotopies, holding ρ fixed at 0.75. Similar

figures, but with ρ varying rather than δ (with δ held fixed at 0.05, as the graphical results

are clearer than with δ = 0.0275) are presented in Appendix C.5.

Consistent with our results for the number of equilibria, the folds and loops in the homotopy

paths that exist for low δ when bp = 0 are eliminated as bp rises, so that there is a unique

equilibrium for all δ for bp ≥ 0.1. For δ < 0.6, increases in bp are associated with lower long-run

market concentration, consistent with the pattern identified in the BDK model that strategic

buyers spread purchases to preserve long-run competition. However, whereas in the BDK

model lower long-run concentration is associated with lower long-run prices, the possibility of

forgetting means that spreading sales across sellers may raise long-run production costs. This

leads to long-run prices being higher when bp = 1 than for some lower bp values when δ is

between 0.03 and 0.1, but the broad pattern is that more strategic buyer behavior tends to

lower long-run prices as competition is preserved.

The feature that competition to defend or attain an advantage can last indefinitely in the

BDKS model also affects the welfare comparisons. In the welfare plots we show a smaller

number of bp lines to avoid clutter, and we compare surplus relative to the level when bp = 1.

For low values of δ, such as δ = 0.0275, where there are multiple equilibria, the effect of raising

bp on surplus depends on which equilibrium is considered. This was also true in the BDK

model. Focusing on higher values of bp, such as 0.1, where there is always a single equilibrium

for the parameters shown, increasing bp tends to lower consumer surplus and total surplus for

δ < 0.6, although we note that the comparison is unclear around δ = 0.2.33

33The reduction in total surplus when bp increases is explained by the lack of an outside option, which
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Figure 13: Extended BDKS Model: Equilibrium Expected Long-Run HHI, Long-Run Average
Prices and NPV Welfare with ρ = 0.75. In panels (c) and (d) surplus is measured relative to
the surplus in the unique equilibrium when bp = 1.

(a) Expected Long-Run HHI (HHI∞) (b) Long-Run Expected Prices (P∞)

(c) NPV Consumer Surplus (d) NPV Total Surplus
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For δ > 0.6, patterns look different, because forgetting is rapid and marginal costs can

only be kept low if purchases are focused on the same seller.34 Therefore more strategic buyer

behavior results in higher concentration, lower long-run prices and higher surplus.

As an aside, even though the lines in all of the figures intersect around δ = 0.6, it is not

the case that seller strategies are identical for different bp. For example, for low values of bp,

the equilibrium involves firms setting low prices when their states are symmetric (a narrow

diagonal trench), whereas for higher values of bp there is there is a range of states where firms

have different levels of experience but prices are very low. However, because the probability

of forgetting is very high, the game will almost certainly be played in states where both firms

have no or very low know-how, and for these states equilibrium prices are similar, leading to

similar values of the outcome measures.

6 Conclusion

We have examined how equilibrium behavior and market outcomes change in well-known

models where firms can benefit from learning-by-doing (LBD) when buyers partially internalize

how their purchase decisions affect future buyer surplus. Our examination is motivated by the

fact that most industries where LBD has been documented have at least some repeat buyers

who we would expect to be forward-looking, whereas the existing literature has focused on

the cases of short-lived atomistic buyers and monopsony.

The literature that has assumed that buyers are atomistic has emphasized that the ex-

istence of multiple equilibria is the norm rather than the exception, and that it is common

for equilibria where competition tends to persist to coexist with equilibria where the industry

develops to have a highly concentrated market structure. We find that even moderate degrees

of forward-looking buyer behavior eliminate the multiplicity of equilibria for many parameter

values, and that it is equilibria where competition is more likely to be sustained in the long-run

that survive. As a result, strategic buyer behavior tends to lower prices in the long-run, even

though the NPV of consumer surplus can be lowered as the incentive of firms to try to gain

implies that a strategic buyer will not increase the number of sales, and by the increase in long-run production
costs when competition is preserved.

34For example, the probability that the firm forgets when it has acquired one level of know-how (ei = 2) is
0.84 when δ = 0.6.
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an initial advantage is weakened.

We interpret our results as having at least two encouraging implications. One interpre-

tation of the existing literature would be that, left to themselves, industries where firms can

benefit from LBD might tend to tip towards inefficient dominance by a single firm, even when

the underlying demand and cost structure could also support long-run competition. Our anal-

ysis suggests that this may be unlikely to happen in markets with even moderate buyer-side

concentration. The existence of multiple equilibria also provides a well-known challenge, and

often a deterrent, to conducting empirical and applied research using dynamic games. Our

finding that equilibria with strategic buyers are typically unique, which is confirmed using a

new approach in the context of the BDK model, suggests that adding strategic buyers may

be a way to reduce multiplicity concerns, while also increasing the realism of these models.

An important direction for future research will be to identify whether these encouraging

results are robust to including additional realistic extensions. For example, in most of the

markets where strategic buyers are relevant, buyers may be asymmetric in their size or tastes,

buyers and sellers may also be able to write contracts with multi-period options35, or prices

may be set by some combination of a procurement auction and subsequent negotiation with

the preferred bidder. It may be impractical to use homotopy methods to exhaustively search

for multiple equilibria in models that include these features, making the types of recursive

methodology, which we use in this paper to confirm the homotopy results, even more useful.

35One reason for preferring a model without commitment is that even if a buyer and seller sign a contract
covering multiple periods when there is competition, there is some risk of ex-post opportunism by a seller that
becomes a monopolist if there are non-contractible elements that firms care about.
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