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I Supplemental Materials on Empirical Analysis

This section provides supplementary empirical analyses to support our model implications

in the main text.

I.1 Empirical Asset Pricing Tests

I.1.1 Asset Pricing Factor Regressions

In this subsection, we consider the extent to which the variability in the average returns

of the durability-sorted portfolios in our analysis can be explained by exposure to standard

risk factors that are proposed by the Fama and French (2015) five-factor model, the Hou,

Xue, and Zhang (2015) q-factor model, or, notably, the collateralizability factor identified in

Ai, Li, Li, and Schlag (2020).1

To test the standard risk factor models, we perform time-series regressions of asset

durability-sorted portfolios’ excess returns on the Fama and French (2015) five-factor model

(the market factor-MKT, the size factor-SMB, the value factor-HML, the profitability factor-

RMW, and the investment factor-CMA), and of the collateralizability factor-COL (i.e., the

long-short portfolio sorted on collateralizability) in Panel A, as well as on the Hou, Xue, and

Zhang (2015) q-factor model (the market factor-MKT, the size factor-SMB, the investment

factor-I/A, and the profitability factor-ROE), and the long-short portfolio sorted on collat-

eralizability (COL) in Panel B, respectively. We use these time-series regressions to estimate

the betas (i.e., risk exposures) of each portfolio’s excess return on various risk factors and

also to estimate each portfolio’s risk-adjusted return (i.e., alphas in %). We annualize the

excess returns and alphas in Table IA.1.

[Place Table IA.1 about here]

As presented in Table IA.1, the risk-adjusted returns (intercepts) of the high-minus-low

portfolio sorted by asset durability remain notably large and statistically significant. These

intercepts range from 8.14% for the Fama and French (2015) five-factor model in Panel A to

8.54% for the Hou, Xue, and Zhang (2015) q-factor model in Panel B. These intercepts are all

at least 3.38 standard errors above zero, indicating high statistical significance. Additionally,

the alphas estimated by both the Fama-French five-factor model and the HXZ q-factor model

remain comparable to the durability spread observed in the univariate sorting (Table 3).

Furthermore, the high-minus-low portfolio’s returns exhibit significantly negative market

1The Fama and French factors are sourced from Kenneth French’s data library (http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html). The HXZ factors are obtained from
the q-factors data library (http://globalq.org/index.html).
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betas in relation to both the Fama and French (2015) five-factor model and the Hou, Xue,

and Zhang (2015) q-factor model. However, these returns show insignificantly negative betas

with respect to both models. Lastly, the asset durability spread cannot be explained by the

collateralizability factor (COL), despite the association between higher asset durability and

asset collateralizability.

Overall, the outcomes from our asset pricing factor tests detailed in Table IA.1 indicate

that the variation in cross-sectional returns among portfolios categorized by asset durability

cannot be absorbed by the Fama and French (2015) five-factor model, the HXZ q-factor

model (Hou, Xue, and Zhang (2015)), or the collateralizability premium. Consequently, the

elevated returns linked to asset durability are not explained by common risk factors. In

our next subsection, we reinforce the association between asset durability and returns by

utilizing Fama-Macbeth regressions.

I.1.2 Firm-level Return Predictability Regressions

We further investigate the predictive capacity of asset durability for cross-sectional stock

returns using Fama-MacBeth cross-sectional regressions (Fama and MacBeth (1973)). This

analytical method enables us to account for an extensive array of firm characteristics that

predict stock returns. Moreover, it allows us to explore whether the positive relationship

between asset durability and returns can be attributed to other established predictors at the

firm level that are captured in the literature.2

We perform cross-sectional regressions for each month spanning from July of year t to

June of year t+ 1 as expressed in the following equation:

Ri,t+1 −Rf,t+1 = a+ b× Asset Durabilityi,t + c× Controlsi,t + εit. (I.1)

Within each month, we regress the monthly returns of individual stocks (annualized by

multiplying by 12) against the asset durability of year t−1 (reported by the end of December

of year t − 1), diverse sets of control variables known by the end of June of year t, and

industry fixed effects. Our control variables encompass the natural logarithm of market

capitalization at the end of each June (Size), which is deflated by the CPI index, the natural

logarithm of the book-to-market ratio (B/M), the investment rate (I/K), profitability (ROA),

R&D intensity (R&D/AT), organization capital ratio (OC/AT), book leverage, and industry

2Using this approach is advantageous compared to using portfolio tests, as the latter not only necessitate
predetermined breaking points for sorting firms into portfolios, but also involve the selection of the number
of portfolios. Moreover, since incorporating multiple sorting variables with distinct information about future
stock returns through a portfolio approach is intricate, Fama-MacBeth cross-sectional regressions offer a
reliable cross-validation mechanism.
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indicators based on NAICS 3-digit industry classifications. To mitigate the impact of outliers,

all independent variables are normalized to possess a zero mean and one standard deviation,

following winsorization at the 1st and 99th percentiles.

[Place Table IA.2 about here]

Table IA.2 displays the outcomes of cross-sectional predictability regressions conducted

on a monthly basis. The presented coefficient represents the mean slope derived from monthly

regressions, while the accompanying t-statistics are obtained by dividing the average slope by

its standard error across the time series. These Fama-MacBeth regression results are aligned

with the patterns that we observe in portfolios organized with respect to asset durability.

Our Fama-MacBeth regression results corroborate our findings from portfolios sorted

with respect to asset durability. To address the potential influence of leveraged positions, we

incorporate a control for firm-level book leverage in each specification. In Specification 1,

the relationship between asset durability and future stock returns is statistically significant

and positive, characterized by a slope coefficient of 2.13, which is 3.44 standard errors from

zero. This outcome underscores that the asset durability-return relation is predominantly

driven by the leverage channel. For Specification 2, we introduce firm-level collateralizability

as outlined by Ai, Li, Li, and Schlag (2020). Notably, the slope coefficient associated with

asset durability remains significant and even increases in magnitude, even after we explicitly

account for firm-level collateralizability. Simultaneously, collateralizability exhibits a signif-

icant and negative prediction for stock returns, which aligns with findings in Ai, Li, Li, and

Schlag (2020).

We next explore potential alternative explanations grounded in systematic risks proposed

by previous studies. Specifically, we investigate four alternative channels that could account

for variations in our asset-durability-sorted portfolios:

Operating Leverage and Adjustment Costs: High-asset-durability firms might ex-

perience elevated expected returns due to the presence of higher fixed or adjustment costs

associated with the downsizing of capital stock, especially during periods of economic decline.

This aligns with the literature (e.g., Zhang (2005), Gu, Hackbarth, and Johnson (2018), Kim

and Kung (2017)) which posits that firms with durable assets face challenges and costs when

downsizing their production capacity, thus contributing to our observed pattern of returns

in our analysis.

Output Durability: Firms with high asset durability often generate durable goods

as outputs, making their cash flows more sensitive to business cycle fluctuations. This

could contribute to observed differences in returns. This concept corresponds to the theory

proposed by Gomes, Kogan, and Yogo (2009).
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Financial Distress: Lower asset durability might expose firms to a higher risk of finan-

cial distress, resulting in comparatively lower average returns. This possibility is consistent

with research by Griffin and Lemmon (2002), Bharath and Shumway (2008), and Campbell,

Hilscher, and Szilagyi (2008).

In sum, these alternative explanations suggest that the observed return differentials could

be driven by factors beyond asset durability, such as operating dynamics, output character-

istics, and financial vulnerabilities.

If operating leverage (Zhang (2005) and Gu et al. (2018)) or adjustment costs (Kim

and Kung (2017)) prove to be the driving factors behind the asset durability premium,

we would then anticipate that this premium would diminish when we account for operating

leverage in Specifications 3 and 4, or for asset redeployability in Specification 5. However, the

significantly persistent positive slope coefficients on asset durability at the 1% level in these

specifications indicate that the observed return predictability is not attributed to systematic

risk that stems from either operating leverage or adjustment costs.

We also explore the concept of output durability as proposed by Gomes, Kogan, and

Yogo (2009) and examine its relationship with our asset durability measure.3 Gomes, Kogan,

and Yogo (2009) posit that producers of durable goods experience cash flow sensitivity to

aggregate economic fluctuations due to the procyclicality of demand for their products.

This elevated sensitivity renders their stocks riskier and yields higher average returns. In

Specification 6, we observe that firm-level asset durability continues to predict stock returns,

even after we account for the Durable Output dummy that reflects a firm operates in durable

goods producing industries. This persistence in positive predictability suggests that our asset

durability measure encapsulates distinct information compared to that of output durability.

However, we recognize that variations in stock returns that we highlight in Gomes, Kogan,

and Yogo (2009) primarily stem from differences between durable and service industries

(across industries). On the contrary, our asset durability’s predictability revolves around

disparities in firms’ asset durability in relation to their industry peers (within the industry).

Consequently, the concepts of output durability and capital durability complement each

other, although they stem from different economic mechanisms.

For Specifications 7 through 10, we introduce the firm-level O index, the Z index, default

probability, and failure probability as measures of a firm’s financial distress, as proposed by

Griffin and Lemmon (2002), Bharath and Shumway (2008), and Campbell, Hilscher, and

Szilagyi (2008). Notably, we observe that the coefficients on asset durability remain signifi-

cant and, if anything, are slightly more pronounced in magnitude when we explicitly account

3Detailed classifications for output durability are obtained fromMotohiro Yogo’s personal website (https:
//sites.google.com/site/motohiroyogo/).
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for these firm-level financial distress measures. Our findings in Specifications 7 to 10 have

important implications. Firstly, they underscore that the positive asset durability premium

stands apart from the negative relation between distress and expected returns, which is

commonly documented in the literature. These specifications reaffirm that asset durability’s

predictability is independent of financial distress and that it encompasses information that

goes beyond what is captured by financial distress. Secondly, our theoretical framework

may provide insights into the financial distress puzzle, suggesting that financially distressed

firms exhibit lower risk and consequently lower average returns since they tend to use more

economical non-durable assets and experience less price cyclicality.

In our final specification, Specification 12, we find that the predictability of asset dura-

bility for stock returns remains intact even when we account for all the known predictors and

control variables together in a comprehensive analysis. This horse racing test demonstrates

that these variables do not undermine the predictive power of asset durability. In summary,

our findings suggest that asset durability’s ability to forecast stock returns is distinct and

not overshadowed by these established predictors.

II Computation Details on Model Solutions

To study asset pricing implications, we first solve the model regarding dynamics of ag-

gregate prices and quantities only and then take policy functions to simulate a large panel

of firms for computing return profiles. In this section, we describe our computational proce-

dures for solving the model about aggregates.

Specifically, we use the modified Parameterized Expectation Algorithm (PEA) as in

Christiano and Fisher (2000) to solve our model for the sequence of functional objects.

We thus solve our model using a global method, which allows for occasionally binding con-

straints and distinguishes ours from the literature that imposes a binding constraint at the

stochastic steady state. As we abstract away from a time-varying firm distribution, our

model solution shows that all firms could be constrained or unconstrained in different times

along the simulation path.

II.1 Recast of the Law of Motion for Ease of Computation

Our numerical implementation reduces the computational burden by avoiding the itera-

tive root-finding that is extremely time-consuming but routinely associated with a dynamic

programming problem. That is, our computation can be very iteratively solved for the root of

an equilibrium functional nprime(A, λ, n) that fits the path of the law of motion per equation
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(III.4).

Instead, we perform some change of variable that effectively reconstructs endogenous state

variables by which the law of motion of net worth is no longer intertwined with equilibrium

functionals. Specifically, we change the normalization of the total cost of borrowing Rf,t+1Bt

as of period t+ 1 using future capital stock of Kt+1, which gives b̃t =
Rf,t+1bt

Γt
. The redefined

debt position b̃t thus enters the law of motion such that:

nt+1 = (1− λt+1)(st+1 − b̃t) + λt+1χst+1 (II.1)

in which st+1 = ανAt+1 + (1 − δd)ζqd,t+1 + (1 − δnd)(1 − ζ)qnd,t+1. When we combine this

with the balance sheet constraint nt+ bt = Γt(ζqd,t+(1− ζ)qnd,t), we have the law of motion

refined over this redefined debt position, which directly builds on the predefined grids of b̃t

without solving for any root functional.

b̃t =
Rf,t+1

Γt

(1− λt) b̃t−1 +Rf,t+1[ζqd,t + (1− ζ)qnd,t]

− Rf,t+1

Γt

[1− λt(1− χ)]st (II.2)

In particular, the occasionally binding borrowing constraint based on the redefined debt

position is formulated as:

b̃t ≤ Rf,t+1θ[(1− δd)ζqd,t + (1− δnd)(1− ζ)qnd,t] (II.3)

II.2 Recast of the Recursive Equilibrium

We then recast the model equilibrium conditions and solve a sequence of equilibrium

functional X(At, λt, b̃t−1) defined over a predetermined debt position b̃t−1 and the aggregate

states At and λt as of time t. We show that our recast model structure is not subject to time-

consuming root-finding iterations. Similarly, we denote the generic variable in period t as X

and X ′ for period t+1 and x and X to characterize a generic normalized and non-normalized

quantity, respectively. The model equilibrium can be similarly rewritten as a set of a set of

equilibrium functional {c
(
A, λ, b̃

)
, b̃′(A, λ, b̃), i

(
A, λ, b̃

)
, µ
(
A, λ, b̃

)
, η
(
A, λ, b̃

)
, qd

(
A, λ, b̃

)
,

qnd

(
A, λ, b̃

)
, Rf

(
A, λ, b̃

)
, ϕ
(
A, λ, b̃

)
,M ′

(
A, λ, b̃

)
, M̃ ′

(
A, λ, b̃

)
, n
(
A, λ, b̃

)
,Γ
(
A, λ, b̃

)
} sat-

isfying the following set of functional equations:
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M ′ = β

c
(
A′, λ′, b̃′

)
Γ
(
A, λ, b̃

)
c
(
A, λ, b̃

)
− 1

ψ

 u
(
A′, λ′, b̃′

)
E

[
u
(
A′, λ′, b̃′

)1−γ
] 1

1−γ


1
ψ
−γ

, (II.4)

M̃ ′ = M ′[(1− λ′)µ
(
A′, λ′, b̃′

)
+ λ′], (II.5)

E
[
M ′|A, λ, b̃

]
Rf

(
A, λ, b̃

)
= 1, (II.6)

µ
(
A, λ, b̃

)
= E

[
M̃ ′
∣∣∣A, λ, b̃]Rf

(
A, λ, b̃

)
+ η

(
A, λ, b̃

)
, (II.7)

µ
(
A, λ, b̃

)
= E

M̃ ′
ανA′ + (1− δd) qd

(
A′, λ′, b̃′

)
qd

(
A, λ, b̃

)
∣∣∣∣∣∣A, λ, b̃

+ θ(1− δd)η
(
A, λ, b̃

)
, (II.8)

µ
(
A, λ, b̃

)
= E

M̃ ′
ανA′ + (1− δnd) qnd

(
A′, λ′, b̃′

)
qnd

(
A, λ, b̃

)
∣∣∣∣∣∣A, λ, b̃

+θ(1−δnd)η
(
A, λ, b̃

)
, (II.9)

b̃′(A, λ, b̃) =
Rf (A, λ, b̃)

Γ(A, λ, b̃))
(1− λ) b̃+Rf (A, λ, b̃)[ζqd(A, λ, b̃) + (1− ζ)qnd(A, λ, b̃)]

− Rf (A, λ, b̃)

Γ(A, λ, b̃)
[1− λ(1− χ)](aνA+ (1− δd)ζqd(A, λ, b̃) + (1− δnd)(1− ζ)qnd(A, λ, b̃)),

(II.10)

n(A, λ, b̃)Rf (A, λ, b̃)

Γ(A, λ, b̃)
+ b̃′(A, λ, b̃) = Rf (A, λ, b̃)[ζqd(A, λ, b̃) + (1− ζ) qnd(A, λ, b̃)], (II.11)

η
(
A, λ, b̃

)
{b̃′(A, λ, b̃)−Rf

(
A, λ, b̃

)
θ[ζ(1−δd)qd

(
A, λ, b̃

)
+(1−ζ)(1−δnd)qnd

(
A, λ, b̃

)
]} = 0,

(II.12)

G′
(
i
(
A, λ, b̃

))
= ϕ

(
A, λ, b̃

)
qd

(
A, λ, b̃

)
+
(
1− ϕ

(
A, λ, b̃

))
qnd

(
A, λ, b̃

)
, (II.13)

c
(
A, λ, b̃

)
+ i
(
A, λ, b̃

)
+ g

(
i
(
A, λ, b̃

))
= A, (II.14)

ϕ
(
A, λ, b̃

)
=

(δd − δnd) (1− ζ) ζ

i
(
A, λ, b̃

) + ζ, (II.15)

Γ
(
A, λ, b̃

)
= i
(
A, λ, b̃

)
+ [1− ζδd − (1− ζ)δnd]. (II.16)
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II.3 Functional Approximation

Following Christiano and Fisher (2000), we solve the sequence of functional objects in

equilibrium by using functional approximations based on Chebyshev polynomials. To im-

plement our numerical algorithm, we use Chebyshev polynomial basis functions Tk(x) up to

n-orders, i.e., from order-0 to order-(n-1) k ∈ {0, 1, ..., n − 1}, so we can approximate six

equilibrium functional objects (i.e., the asset prices of durable capital qd(A, λ, b̃)) of non-

durable capital qnd(A, λ, b̃), the equilibrium risk-free rate Rf (A, λ, b̃), the marginal product

of capital investment µ(A, λ, b̃), the utility function u(A, λ, b̃), and the policy function on

optimal consumption c(A, λ, b̃). Carrying on basis coefficients of the Chebyshev functional

approximates can sufficiently help us back out the rest of the equilibrium functional objects

defined in the recursive equilibrium. The six Chebyshev approximated functionals are stated

as:

qd(x;λi, Aj) =
k=n−1∑
k=0

dqd,k,iλ,jA(x)Tk(x) (II.17)

qnd(x;λi, Aj) =
k=n−1∑
k=0

dqnd,k,iλ,jA(x)Tk(x) (II.18)

Rf (x;λi, Aj) =
k=n−1∑
k=0

dRf,k,iλ,jA(x)Tk(x) (II.19)

µ(x;λi, Aj) =
k=n−1∑
k=0

dµ,k,iλ,jA(x)Tk(x) (II.20)

u(x;λi, Aj) =
k=n−1∑
k=0

dU,k,iλ,jA(x)Tk(x) (II.21)

c(x;λi, Aj) =
k=n−1∑
k=0

dc,k,iλ,jA(x)Tk(x) (II.22)

in which x takes discrete values of xj = 2(b̃j − b)/(b̄ − b) − 1 derived from the grid space

of b̃t−1 ∈ {b̃1, ..., b̃nb}. We note that such changes of variables accommodates the fact that

Chebyshev polynomial basis functions Tk(x) are defined over x ∈ [−1, 1]. b̄ and b thus capture

the upper and lower bounds of the predetermined redefined debt position. At = Aj ∈ A

and λt = λi ∈ Λ take discrete values from some discretization on the TFP At and the

liquidity shock process χt of grid points of nA and nχ considering their correlations. The

basis coefficient vectors dqd,k,iλ,jA(x), dqnd,k,iλ,jA(x), dRf,k,iλ,jA(x), dµ,k,iλ,jA(x), dU,k,iλ,jA(x), and

dc,k,iλ,jA(x) are therefore specific to the discrete values of aggregate states.

We reach our model solution once the iterations over the basis coefficients on different
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orders of Chebyshev polynomials at selected nodes of state variables obtain numerical conver-

gence. This would effectively pin down the equilibrium objects. In terms of implementation,

our functional approximations are based on Chebyshev polynomial basis functions Tk(x) up

to 3-orders, and we confirm that our results are not sensitive to increasing the order of the

Chebyshev polynomials. We also select three nodes that are the roots of the Chebyshev

polynomials and effectively map them to the grids of the redefined debt positions. We set

the b̄ = 5 and b = 0 for reaching the model solutions. It can be shown that our model

solution is robust to expanding or shrinking the width of the node grids.

II.4 Outline of the Algorithm

Finally, we outline the exact algorithm of our numerical routines to obtain the basis coef-

ficients of Chebyshev polynomials that best approximate the equilibrium functional objects.

Following Galindev and Lkhagvasuren (2010), we first generate discretized nodes of TFP

shocks and the liquidity shocks of dimension NA × Nλ = 32 = 9, so we may consider their

shock correlations. With N b̃ = 3 nodes of debt grids, the procedure continues in the form of

iterations as below:

1. Conditional on each predetermined debt position b̃t−1 = bj and the realizations of Aiλ

and AjA , we compute the conjectured q0d,t, q
0
nd,t using guess basis coefficients. There-

after, we solve for the implied investment-capital ratio ik1
t , the consumption-capital

ratio c1t , and the investment share into durable capital goods ϕ1
t , given Equations

(II.13)(II.14) and (II.15).

2. Following the law of motion per Equation (II.10), conjectured R0
f,t+1, and the computed

capital growth Γt by Equation (II.16), we solve for the implied b̃t and the networth nt.

As a result, we can compute conjectured future consumption c0t+1 and utility values

u0
t+1 to pin down the implied risk-free rate R1

f,t+1 and the implied utility values u1
t .

Using Equations (II.4) and (II.5), we compute the stochastic discount factors M̃t+1

and Mt+1

3. We then compute the implied borrowing limit b̃1 = Rf,t+1θ[(1− δd)ζq
0
d,t+(1− δnd)(1−

ζ)q0nd,t], and proceed to check if the constraint is binding. If b̃t > b̃1, we set b̃t = bl

and recompute the implied expected marginal product of capital µ1 and updated η1t

using Equations (II.8) and (II.9). Otherwise, η1t = 0, and we leave the redefined debt

unchanged and solve for µ1
t per Equation (II.7)

4. Depending on updated values of µ1
t , we solve for implied market equilibrium asset

prices q1d,t and q1nd,t from the non-arbitrage conditions of capital investment in durable

capital and non-durable capital, respectively.
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5. Finally, we solve the basis coefficient vector in a linear equation system evaluated

at each node of xj at the implied values of q1d,t, q
1
nd,t, R

1
f,t+1, µ

1
t , u

1
t and c1t , and then

update the basis coefficient vectors stacked in a long vector d in the following routine

d∗ = z · d∗ + (1− z) · d for which z is some dampening parameter. The program stops

if norm(d∗ − d) < tol for which tol is some tolerance threshold.

II.5 Computational Efficiency

For a given calibration and a dimension of 6 ∗ 3 ∗ 9 = 162 for all basis coefficients

related to functional approximates, our model is solved fairly quickly. Running on a PC

with a processor of configuration Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz along with

a 32GB RAM, it takes about 10 seconds to obtain the model solution up to a tolerance

criterion of 10−3.

III Proof of Proposition 1

We prove Proposition 1 in two steps: first, given prices, the quantities satisfy the house-

hold’s and the entrepreneurs’ optimality conditions; second, the quantities satisfy the market-

clearing conditions.

Since the optimization problems of households and firms are all standard convex pro-

gramming problems, we only need to verify optimality conditions. Equation (II.6) is the

household’s first-order condition. Equation (II.14) is a normalized version of a resource

constraint (15). Both of them are satisfied as listed in Proposition 1.

To verify that the entrepreneur i’s allocations {Ni,t, Bi,t, K
d
i,t, K

nd
i,t , Li,t} as constructed in

Proposition 1 satisfy the first-order conditions for the optimization problem in equation (9),

the first-order condition with respect to Bi,t implies:

µi
t = Et

[
M̃t+1

]
Rf,t+1 + ηit. (III.1)

Similarly, the first-order condition for type-d capital Kd
i,t+1 is:

µi
t = Et

[
M̃ i

t+1

ΠKd

(
Āt+1, zi,t+1, K

d
i,t+1, K

nd
i,t+1

)
+ (1− δd) qd,t+1

qd,t

]
+ θ(1− δd)η

i
t. (III.2)
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Finally, the optimality with respect to the choice of type-nd capital Knd
i,t+1 implies:

µi
t = Et

[
M̃ i

t+1

ΠKnd

(
Āt+1, zi,t+1, K

d
i,t+1, K

nd
i,t+1

)
+ (1− δnd) qnd,t+1

qd,t

]
+ θ(1− δnd)η

i
t. (III.3)

Next, the law of motion of the endogenous state variable n can be constructed from

equation (8):

n′ = (1− λ)

[
ανA′ + ζ (1− δd) qd (A

′, n′) + (1− ζ) (1− δnd) qnd (A
′, n′)

−θ [ζqd (A, n) + (1− ζ) qnd (A, n)]Rf (A, n)

]
+λχ

n

Γ (A, n)
. (III.4)

Using the law of motion of the state variables, we can construct the normalized utility of the

household as the fixed point of:

u (A, n) =

{
(1− β)c (A, n)1−

1
ψ + βΓ (A, n)1−

1
ψ (E[u (A′, n′)

1−γ
])

1− 1
ψ

1−γ

} 1

1− 1
ψ

.

The stochastic discount factors must be consistent with household utility maximization:

M ′ = β

[
c (A′, n′) Γ (A, n)

c (A, n)

]− 1
ψ

 u (A′, n′)

E
[
u (A′, n′)1−γ] 1

1−γ

 1
ψ
−γ

, (III.5)

M̃ ′ = M ′[(1− λ)µ (A′, n′) + λ]. (III.6)

In our setup, we assume that the idiosyncratic shock zi,t+1 is observed before the de-

cisions on Kd
i,t+1 and Knd

i,t+1 are made, and thus can construct an equilibrium in which

µi
t and ηit are equalized across all the firms because ∂

∂Kd
i,t+1

Π
(
Āt+1, zi,t+1, K

d
i,t+1, K

nd
i,t+1

)
=

∂
∂Knd

i,t+1
Π
(
Āt+1, zi,t+1, K

d
i,t+1, K

nd
i,t+1

)
are the same for all i.

Our next step involves verifying the market-clearing conditions. Given the initial con-

ditions (initial net worth N0,
Kd

1

Knd
1

= ζ
1−ζ

, Ni,0 = zi,1N0) and the net worth injection rule

for new entrant firms (N entrant
t+1 = χNt for all t), we establish the market-clearing conditions

using the following lemma. It’s important to note that our model accommodates scenarios

in which the collateral constraint occasionally becomes binding. The treatment of cases for

which this constraint is binding or not is handled similarly.

Lemma III.1. The optimal allocations {Ni,t, Bi,t, K
d
i,t+1, K

nd
i,t+1} constructed as described in
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Proposition 1 satisfy the market-clearing conditions:

Kd
t+1 =

∫
Kd

i,t+1 di, Knd
t+1 =

∫
Knd

i,t+1 di, Nt =

∫
Ni,t di, (III.7)

for all t ≥ 0.

Before proving this lemma, we discuss the timing of the liquidation shock for a firm’s

entry and exit. As outlined in Section 4.1, the dynamics of the idiosyncratic shock zi,t follow:

zi,t+1 = zi,t e
εi,t+1 ,

in which εi,t+1 is independently and identically distributed (i.i.d) across firms and over time.

Additionally, we assume that E[eεi,t+1 ] = eµ+
1
2
σ2

for simplicity’s sake. It’s important to point

out that the realization of the liquidation shock λt+1 and the idiosyncratic productivity shock

εi,t+1 occur in the morning of t+ 1, before the production takes place.

After the realization of λt+1 and εi,t+1, a fraction of 1− λt+1 of firms continue to operate

in the economy and use their planned Kd
i,t+1 and Knd

i,t+1 for production. Simultaneously, a

fraction of λt+1 firms will liquidate and exit the economy. At the same time, an equal fraction

of λt+1 of new firms are born. These new firms do not generate any production at time t+1

but plan their Kd
i,t+2 and Knd

i,t+2 for production at time t + 2. The initial productivity of

these new firms is denoted by z̄t+2 and is conditional on not being liquidated at time t+ 2.

The total amount of productivity zt that is involved in production at time t+1 is denoted

as Zt+1 =
∫
zi,tdi. The evolution of Zt+1 follows the following steps:

Zt+1 = (1− λt)

∫
zi,t+1di+ λtz̄t+1

= (1− λt)

∫
zi,te

εi,t+1di+ λtz̄t+1

= (1− λt)

∫
zi,tdi

∫
eεi,t+1di+ λtz̄t+1 (Independence)

= (1− λt)Zt e
µ+ 1

2
σ2

+ λtz̄t+1 (Law of Large Number).

We normalize the aggregation of productivity to be one in the steady-state (i.e., Zt+1 =

Zt = 1.) Therefore, the normalized initial productivity denotes:

z̄t+1 =
1

λt

[
1− (1− λt)e

µ+ 1
2
σ2
]
.

To prove Lemma III.1, we will use induction. Let’s start with the initial conditions for

t = 0. We have Ni,0 = zi,1N0, in which zi,1 is chosen from the stationary distribution of
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z. We will discuss both the binding constraint case and the non-binding constraint case

separately.

If the constraint is binding for t = 0, then the individual entrepreneur i’s capital decisions

Kd
i,t+1, K

nd
i,t+1 must satisfy the following conditions:

Ni,0 = [1− θ(1− δd)] qd,0K
d
i,1 + [1− θ(1− δnd)] qnd,0K

nd
i,1 , (III.8)

Kd
i,1 +Knd

i,1 = zi,1(K
d
1 +Knd

1 ). (III.9)

Clearly, we solve Kd
i,1 and Knd

i,1 according to the above two equations, in which the solutions

for Kd
i,1 and Knd

i,1 denote Kd
i,1 = zi,1K

d
1 and Knd

i,1 = zi,1K
nd
1 . In turn, Bi,0 = zi,1B0.

Suppose that the constraint is not binding for t = 0. The aggregate borrowing constraint

can be expressed as:

B0 ≤ θ(1− δd)qd,1K
d
1 + θ(1− δnd)qnd,1K

nd
1 , (III.10)

in which the inequality ensures that the aggregate borrowing does not exceed the fraction of

capital investment that can be financed through external borrowing in the first period.

To initiate the recursion process, we assume that the same allocation rule is applied as in

the case when the constraint is binding (i.e., Kd
i,1 and Knd

i,1 .) This allows us to demonstrate

that Bi,0 = zi,1B0 and that the borrowing constraint remains non-binding at the firm level.

Given that Z1 =
∫
zi,tdi = 1, the following conditions hold at the end of period 0:∫
Kd

i,1 di = Kd
1 ,

∫
Knd

i,1 di = Knd
1 ,

∫
Ni,0 di = N0. (III.11)

At the beginning of period 1, the realization of λ1 occurs. A fraction of 1 − λ1 of firms

continue to exist in the economy for production, utilizing the planned Kd
i,1 and Knd

i,1 . After

production and repayment of their debt, firm i’s net worth is given by:

Ni,1 = αA1(K
d
i,1 +Knd

i,1 ) + (1− δd)qd,1K
d
i,1 + (1− δnd)qnd,1K

nd
i,1 −Rf,1Bi,0. (III.12)

On the other hand, a fraction of λ1 firms are liquidated and re-enter the economy with

an initial net worth of N entrant
1 , which is given by:

N entrant
1 = χ

[
αA1(K

d
i,1 +Knd

i,1 ) + (1− δd)qd,1K
d
i,1 + (1− δnd)qnd,1K

nd
i,1

]
. (III.13)

These newly born firms do not engage in production during period 1. Instead, they wait for

the realization of zi,2 and plan their capital allocations Kd
i,2 and Knd

i,2 for the next period.
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To track the aggregation, we consider the total net worth of both existing firms and

newly born firms (i.e., new entrants) at t = 1:

(1− λ1)

∫
Ni,1di+ λ1N

entrant
1 = (1− λ1)

∫ [
αA1(K

d
i,1 +Kn

i,1) + (1− δd)qd,1K
d
i,1

+(1− δnd)qnd,1K
nd
i,1 −Rf,1Bi,0

]
di

+λ1χ
[
αA1(K

d
i,1 +Kn

i,1) + (1− δd)qd,1K
d
i,1 + (1− δnd)qnd,1K

nd
i,1

]
.

At the end of period 1, each firm, including existing firms and new entrants, will observe

zi,2 and plan Kd
i,2 and Knd

i,2 for period 2 accordingly. After realizing the liquidation shock at

t = 2, firms generate production without liquidation. Similarly, the productivity of exiting

firms is denoted as zi,2 = zi,1 e
εi,2 , while the productivity of newly born exiting firms is

denoted as z̄2, which is given by z̄2 =
1
λ1

[
1− (1−λ1)e

µ+ 1
2
σ2
]
. The total productivity at t = 2

is calculated as follows:

Z2 = (1− λ1)

∫
zi,2di+ λ1z̄2

= (1− λ1)

∫
zi,1e

εi,2di+ λ1z̄2

= (1− λ1)

∫
zi,1di

∫
eεi,2di+ λ1z̄2 (Independence)

= (1− λt)Z1 e
µ+ 1

2
σ2

+ λ1z̄2 (Law of Large Number).

Next, firm i decides the allocation between durable and non-durable capital for produc-

tion. We note that when a firm’s financial constraint is not binding, the specific capital

allocation among firms for different capital types is not uniquely determined, given the per-

fect substitutability of two capital types. A firm, therefore, has different paths of capital

financing over time. Concerning this indeterminacy issue, in the following, we present a way

to determine Kd
i,2 and Knd

i,2 separately by constructing a modified version of equation (III.8).

Recalling the non-binding case, the borrowing constraint at the aggregate level is denoted

as:

B1 ≤ θ(1− δd)qd,1K
d
2 + θ(1− δnd)qnd,1K

nd
2 . (III.14)

We take the aggregate measure of constraint slackness in period 1, ∆1 ≥ 0, according to

equation (40). It follows that:

B1 = (θ −∆1)
[
(1− δd)qd,1K

d
2 + (1− δnd)qnd,1K

nd
2

]
, (III.15)
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and

∆1 = θ − B1

(1− δd)qd,1Kd
2 + (1− δnd)qnd,1Knd

2

. (III.16)

∆1 equals 0 when the collateral constraint is binding, under which the capital allocation

will be uniquely determined at the firm level. By allowing for ∆1 ≥ 0, our capital allocation

scheme for the first period is close enough to that of the determinacy case when the aggregate

constraint is binding as ∆1 → 0. We, therefore, regard our firm-level capital allocation as

one of the many possible distributional realizations consistent with the equilibrium at the

aggregate level.

We further assume that the borrowing constraint in equation (III.14) holds at the firm

level:

Bi,1 = (θ −∆1)
[
(1− δd)qd,1K

d
i,2 + (1− δnd)qnd,1K

nd
i,2

]
. (III.17)

Combining the system in equation (III.8) with equation (III.17), we can solve for Kd
i,2 and

Knd
i,2 simultaneously:

Ni,1 = [1− (θ −∆1)(1− δd)] qd,1K
d
i,2 + [1− (θ −∆1)(1− δnd)] qnd,1K

nd
i,2 ,

Kd
i,1 +Knd

i,1 = zi,1(K
d
1 +Knd

1 ).

The solution for Kd
i,2 and Knd

i,2 is given by:

Kd
i,2 =

Ni,1 − zi,2 [1− (θ −∆1)(1− δnd)] qnd,1(K
d
2 +Knd

2 )

[1− (θ −∆1)(1− δd)] qd,1 − [1− (θ −∆1)(1− δnd)] qnd,1
,

Knd
i,2 = zi,2(K

d
2 +Knd

2 )−Kd
i,2.

According to the above solution, durable and non-durable capital and net worth among

existing firms are no longer proportional to zi,2. However, given that
∫
Ni,1di = N1 and∫

zi,2di = 1, we integrate the solution across i and obtain the result:{
[1− (θ −∆1)(1− δd)] qd,1

∫
Kd

i,2di

+ [1− (θ −∆1)(1− δnd)] qnd,1
∫
Knd

i,2di

}
=

∫
Ni,1di = N1,∫

Kd
i,2di+

∫
Knd

i,2di =

∫
zi,2di

(
Kd

2 +Knd
2

)
= Kd

2 +Knd
2 .

It is not necessary to complete the induction argument. If the market-clearing condition

holds for t + 1, then it must hold for t + 2 and for all rest periods. The following claim

characterizes this property:
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Claim 1. Suppose
∫
Kd

i,t+1 di = Kd
t+1,

∫
Knd

i,t+1 di = Knd
t+1 ,

∫
Ni,t di = Nt, and

N entrant
t+1 = χ

[
αAt+1(K

d
i,t+1 +Kn

i,t+1) + (1− δd)qd,t+1K
d
i,t+1 + (1− δnd)qnd,t+1K

nd
i,t+1

]
(III.18)

then ∫
Kd

i,t+2 di = Kd
t+2,

∫
Knd

i,t+2 di = Knd
t+2,

∫
Ni,t+1 di = Nt+1 (III.19)

for all t ≥ 0.

1. Using the law of motion for the net worth of existing firms, we can rewrite the total

net worth of all surviving firms as follows:

(1− λt+1)

∫
Ni,t+1 di

= (1− λt+1)

∫ [
αAt+1

(
Kd

i,t+1 +Knd
i,t+1

)
+ (1− δd) qd,t+1K

d
i,t+1

+(1− δnd) qnd,t+1K
nd
i,t+1 −Rf,t+1Bi,t

]
di

= (1− λt+1)
[
αAt+1

(
Kd

t+1 +Knd
t+1

)
+ (1− δd) qd,tK

d
t+1 + (1− δnd) qnd,tK

nd
t+1 −Rf,t+1Bt

]
.

Following the assumption
∫
Kd

i,t+1di = Kd
t+1,

∫
Knd

i,t+1di = Knd
t+1, and

∫
Bi,tdi = Bt =

(θ −∆t)
[
(1− δd)qd,tK

d
t+1 + (1− δnd)qnd,tK

nd
t+1

]
, and using the assignment rule for the

net worth of new entrants N entrant
t+1 in equation (III.18), we can demonstrate that the

total net worth at the end of period t + 1 across both survivors and new entrants

satisfies
∫
Ni,t+1di = Nt+1, in which the aggregate net worth Nt+1 is given by equation

(8).

2. At the end of period t+1, we have a pool of firms consisting of both existing ones with

net worth given by equation (7) and new entrants. All of these firms will observe zi,t+2

(for the new entrants zi,t+2 = z̄t+2) and begin production at the beginning of period

t+ 1.

We compute capital holdings for period t + 2 for each firm i using equations (3) and

(20). At this point in time, capital holdings and net worth of all existing firms will

not necessarily be proportional to zi,t+2 due to the heterogeneity in the realization

of idiosyncratic productivity shocks. However, we know that
∫
Ni,t+1di = Nt+1 and∫

zi,t+2di = 1. Similar to the case for period t+ 1, we integrate equations (3) and (20)

across all i and obtain the following two equations:

Nt+1 = [1− (θ −∆t+1)(1− δd)] qd,t+1

∫
Kd

i,t+2 di (III.20)

+ [1− (θ −∆t+1)(1− δnd)] qnd,t+1

∫
Knd

i,t+2 di,
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Kd
t+2 +Knd

t+2 =

∫
Kd

i,t+2 di+

∫
Knd

i,t+2 di, (III.21)

in which we have used
∫
Ni,t+1 di = Nt+1 and

∫
zi,t+2 di = 1. In turn, this implies∫

Kd
i,t+2 di = Kd

t+2 and
∫
Knd

i,t+2 di = Knd
t+2. Hence, the claim is proven.

In summary, we have demonstrated that equilibrium prices and quantities outlined in

Proposition 1 adhere to optimality conditions of households and entrepreneurs, and that the

quantities also satisfy market-clearing conditions.

Finally, we present a recursive relationship that can be utilized to solve for Θ (A, n) based

on the equilibrium derived in Proposition 1. The recursion (9) implies:

µtNi,t +Θtzi,t+1(K
d
t +Knd

t ) = Et

[
Mt+1(1− λt+1)

(
µt+1Ni,t+1 +Θt+1(K

d
t+1 +Knd

t+1)zi,t+2

)
+ λt+1Ni,t+1

]
= Et

[
Mt+1{(1− λt+1)µt+1 + λt+1}Ni,t+1

]
+(1− λt+1)zi,t+1Et

[
Mt+1Θt+1(K

d
t+1 +Knd

t+1)
]

= Et

[
M̃t+1Ni,t+1

]
+ (1− λt+1)zi,t+1Et

[
Mt+1Θt+1(K

d
t+1 +Knd

t+1)
]
.

We next begin by simplifying the term Et

[
M̃t+1Ni,t+1

]
. We note that an intermittently

binding collateral constraint, combined with the entrepreneur’s budget constraint (3), leads

to the following condition:

[1− (θ −∆t)(1− δd)] qd,tK
d
i,t+1 + [1− (θ −∆t)(1− δnd)] qnd,tK

nd
i,t+1 = Ni,t. (III.22)

Equation (III.22), along with the optimality condition (20), determines the functions of

Kd
i,t+1 and Knd

i,t+1 in terms of Ni,t and zi,t+1:

Kd
i,t+1 =

Ni,t − zi,t+1 [1− (θ −∆t)(1− δnd)] qnd,t(K
d
t+1 +Knd

t+1)

[1− (θ −∆t)(1− δd)] qd,t − [1− (θ −∆t)(1− δnd)] qnd,t
, (III.23)

Knd
i,t+1 =

zi,t+1 [1− (θ −∆t)(1− δd)] qd,t(K
d
t+1 +Knd

t+1)−Ni,t

[1− (θ −∆t)(1− δd)] qd,t − [1− (θ −∆t)(1− δnd)] qnd,t
. (III.24)

Utilizing the outcomes from equation (III.23) and the firm i’s net worth law of motion in
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equation (7), we can express Ni,t+1 as a linear function of Ni,t and zi,t+1:

Ni,t+1 = zi,t+1αAt+1

(
Kd

t+1 +Knd
t+1

)
+(1− δd) qd,t+1

Ni,t − zi,t+1 [1− (θ −∆t)(1− δnd)] qnd,t(K
d
t+1 +Knd

t+1)

[1− (θ −∆t)(1− δd)] qd,t − [1− (θ −∆t)(1− δnd)] qnd,t

+(1− δnd) qnd,t+1

zi,t+1 [1− (θ −∆t)(1− δd)] qd,t(K
d
t+1 +Knd

t+1)−Ni,t

[1− (θ −∆t)(1− δd)] qd,t − [1− (θ −∆t)(1− δnd)] qnd,t

−Rf,t+1(θ −∆t) (1− δd) qd,t
Ni,t − zi,t+1 [1− (θ −∆t)(1− δnd)] qnd,t(K

d
t+1 +Knd

t+1)

[1− (θ −∆t)(1− δd)] qd,t − [1− (θ −∆t)(1− δnd)] qnd,t

−Rf,t+1(θ −∆t) (1− δnd) qnd,t
zi,t+1 [1− (θ −∆t)(1− δd)] qd,t(K

d
t+1 +Knd

t+1)−Ni,t

[1− (θ −∆t)(1− δd)] qd,t − [1− (θ −∆t)(1− δnd)] qnd,t
.

We are specifically concerned with the coefficients related to zi,t+1. Collecting the terms that

incorporate zi,t+1 on both sides of equation (III.22), we obtain:

Θtzi,t+1

(
Kd

t+1 +Knd
t+1

)
= zi,t+1

(
Kd

t+1 +Knd
t+1

)
× Term,

in which

Term = Et


M̃t+1



αAt+1

+(1− δd)qd,t+1

(
−[1−(θ−∆t)(1−δnd)]qnd,t

[1−(θ−∆t)(1−δd)]qd,t−[1−(θ−∆t)(1−δnd)]qnd,t

)

+(1− δnd)qnd,t+1

(
[1−(θ−∆t)(1−δd)]qd,t

[1−(θ−∆t)(1−δd)]qd,t−[1−(θ−∆t)(1−δnd)]qnd,t

)

−Rf,tθqd,t

(
−[1−(θ−∆t)(1−δnd)]qnd,t

[1−(θ−∆t)(1−δd)]qd,t−[1−(θ−∆t)(1−δnd)]qnd,t

)

−Rf,tθqnd,t

(
[1−(θ−∆t)(1−δd)]qd,t

[1−(θ−∆t)(1−δd)]qd,t−[1−(θ−∆t)(1−δnd)]qnd,t

)




+(1− λ)Et [Mt+1Θt+1] .

We can simplify the first term by utilizing the first-order conditions (II.7)-(II.9), which results

in:

Et

[
M̃t+1 {α (1− ν)At+1}

]
.

Therefore, we arrive at the following recursive relationship for Θ (A, n):

Θ (A, n) = [1− δ + i (A, n)]
{
α (1− ν)E [M ′ {λ+ (1− λ)µ (A′, n′)}A′] (III.25)

+ (1− λ)E [M ′Θ(A′, n′)]
}
.
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The term α (1− ν)A′ represents the firm’s profit due to decreasing returns to scale. It’s clear

that Θ (A, n) can be interpreted as the present value of profit. In the scenario of constant

returns to scale, Θ (A, n) = 0.

IV Data Construction

This section outlines how we (i) form our samples of firms for our empirical analysis and

(ii) create firm characteristics to account for underlying fundamentals.

IV.1 Asset Prices and Accounting Data

Our dataset comprises firms that are common to both Compustat and CRSP (Center

for Research in Security Prices). Accounting data are sourced from Compustat, while stock

return data are gathered from CRSP. Our chosen firms meet the following criteria: they con-

sist of positive durability data, there are no missing SIC codes, and their domestic common

shares (SHRCD = 10 and 11) are traded on NYSE, AMEX, and NASDAQ. We exclude utility

firms with four-digit SIC codes between 4900 and 4999, finance firms with SIC codes between

6000 and 6999 (encompassing finance, insurance, trusts, and real estate sectors), as well as

public administrative firms with SIC codes between 9000 and 9999. Following Campello

and Giambona (2013), we omit firm-year observations with total assets or sales values under

$1 million. Additionally, we follow Fama and French (1993) and exclude closed-end funds,

trusts, American Depository Receipts, Real Estate Investment Trusts, and units of beneficial

interest. To counteract backfilling bias, we require that firms be listed on Compustat for

at least two years before being included in our sample. Macroeconomic data are sourced

from the Federal Reserve Economic Data (FRED) maintained by the Federal Reserve in St.

Louis.

V Additional Empirical Evidence

In this section, we present supplementary empirical findings regarding the connection

between asset durability and various other firm characteristics. Additionally, we present a

summary of the statistics for asset durability across different industries.

V.1 More Detailed Firm Characteristics

Table IA.3 provides an overview of the relationship between variations in asset durability

among firms and various other firm characteristics. The table presents the average asset
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durability and corresponding characteristics across five portfolios, which are sorted based on

firm-level asset durability, specifically among financially constrained firms.

[Place Table IA.3 about here]

In our sample, we have a total of 1, 821 firms. These firms are divided into five portfolios

based on asset durability, with each portfolio representing a quintile ranging from the lowest

to the highest durability. The distribution of firms across these portfolios is relatively even,

with the number of firms in each portfolio ranging from 301 to 417 on average.

Asset durability varies significantly across these portfolios, spanning a range from 7.69

to 18.00. Interestingly, the size of firms does not exhibit substantial variation, although it

does follow a hump-shaped pattern across the durability portfolios.

Examining other firm characteristics, we observe that firms with lower asset durability

tend to have lower book-to-market ratios (B/M) and higher investment rates (I/K) and

Tobin’s q, indicating a higher potential for investment opportunities. Additionally, firms

with lower durability exhibit lower profitability as measured by the return on assets (ROA),

along with lower borrowing capacity as measured by book leverage. These firms also appear

to be more financially constrained, as evidenced by their lower values of SA and WW indices.

These characteristics collectively suggest that firms facing financial constraints, those with

limited tangibility and promising investment prospects, tend to opt for less durable assets.

Finally, we note a negative association between asset durability and collateralizability,

implying that firms with higher asset durability may have more collateralizable assets com-

pared to those with lower durability, which aligns with our model in equation (4).

V.2 Summary Statistics across Industries

Table IA.4 presents the average values of asset durability and depreciation by considering

tangible and intangible assets separately across various industries based on BEA industry

classifications.

Clearly, asset durability and depreciation vary significantly across industries. For in-

stance, industries like educational services and accommodations tend to have higher asset

durability and lower depreciation, while other industries might exhibit the opposite pattern.

The observed cross-industry variations in asset durability and depreciation are substantial,

spanning from 10.84 to 49.49.

These findings highlight the importance of considering industry effects when analyzing

the relationship between asset durability and other variables. By controlling for industry

fixed effects, we ensure that our results are not influenced by idiosyncratic characteristics of
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any particular industry but rather capture the broader relationships between asset durability

and various characteristics across firms within each industry.

[Place Table IA.4 about here]
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Table IA.1: Asset Pricing Factor Tests

This table presents asset pricing factor tests for five portfolios sorted on emissions scaled by total assets
relative to their industry peers, utilizing NAICS 3-digit industry classifications and rebalancing portfolios
at the end of every June. Our results are based on monthly data, spanning from July 1978 to December
2017, and exclude utility, financial, and public administrative industries. The entire sample is divided into
financially constrained and unconstrained firms, as classified by the dividend payment dummy (DIV). To
account for risk exposure, we conduct time-series regressions of asset-durability-sorted portfolios’ excess
returns on the Fama-French five-factor model plus the collateralizability factor, which encompasses MKT,
SMB, HML, RMW, CMA, LMH, and COL in Panel A. In Panel B, we report portfolio alphas and betas
are reported by the HXZ q-factor model plus the collateralizability factor, which includes MKT, SMB, I/A,
ROE, and COL. Data sources for the factors are specified accordingly. Betas and alphas are annualized
by multiplying by 12. We estimate standard errors using the Newey-West correction, and corresponding
t-statistics are reported in parentheses.

L 2 3 4 H H-L

Panel A: FF5 + COL

αFF5+COL -4.13 2.51 1.55 0.43 4.02 8.14
[t] -2.06 1.44 0.94 0.29 2.52 3.38
MKT 1.28 1.14 1.15 1.13 1.17 -0.11
[t] 24.57 32.69 29.01 36.65 33.10 -2.22
SMB 0.51 0.46 0.36 0.46 0.43 -0.08
[t] 5.97 6.35 6.22 8.25 7.54 -0.91
HML -0.24 -0.35 -0.33 -0.46 -0.38 -0.15
[t] -2.45 -4.77 -4.35 -6.83 -4.92 -1.69
RMW -0.10 -0.24 -0.11 0.02 -0.06 0.04
[t] -0.78 -2.19 -1.53 0.34 -0.78 0.25
CMA -0.44 -0.42 -0.51 -0.31 -0.25 0.19
[t] -3.21 -4.18 -4.58 -3.27 -2.88 1.47
COL 0.10 0.13 0.13 0.09 0.03 -0.07
[t] 2.67 3.50 3.69 2.88 0.83 -1.67

Panel B: HXZ + COL

αHXZ+COL -4.71 1.65 1.60 -0.30 3.82 8.54
[t] -2.36 0.86 0.79 -0.17 2.26 3.48
MKT 1.31 1.18 1.17 1.15 1.18 -0.13
[t] 19.40 28.08 26.40 28.47 30.62 -2.20
SMB 0.42 0.37 0.26 0.37 0.37 -0.06
[t] 3.30 3.96 4.37 5.74 7.01 -0.42
I/A -0.62 -0.77 -0.88 -0.80 -0.69 -0.08
[t] -5.18 -8.05 -9.03 -9.30 -8.59 -0.64
ROE -0.03 -0.08 -0.04 0.12 0.01 0.04
[t] -0.34 -0.98 -0.55 1.92 0.17 0.62
COL 0.17 0.24 0.21 0.18 0.11 -0.06
[t] 3.36 6.21 6.36 6.13 3.83 -1.15
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Table IA.2: Fama-Macbeth Regressions

This table presents the results of Fama-MacBeth regressions, in which we analyze individual stock excess returns based on their asset durability and
alternative variables that are relevant in the literature. We conduct our regressions in a cross-sectional manner for each month, spanning from July of
year t to June of year t+ 1. Specifically, in each month, we regress the monthly excess returns of individual stocks (annualized by multiplying by 12)
on the asset durability value from year t− 1, various sets of control variables known by the end of June of year t, and industry fixed effects. Industry
categories are defined using NAIC 3-digit industry classifications. To mitigate the influence of outliers, all independent variables are normalized to
have a zero mean and one standard deviation, after winsorization at the 1st and 99th percentiles. Our reported t-statistics are computed based on
standard errors that we estimated using the Newey-West correction. The sample period for the analysis spans from July 1978 to December 2017.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Durability 2.13 3.62 2.76 1.74 2.31 2.09 1.56 1.95 1.84 1.29 1.46 1.93
[t] 3.44 5.24 4.28 2.35 3.23 3.37 2.74 3.10 3.08 2.13 2.86 3.14
Colllateralizability -3.07
[t] -3.87
Operating Lev. 1.46 2.18
[t] 2.86 3.79
Log Inflex -0.51 0.98
[t] -1.25 2.60
Redeployability -0.49 0.31
[t] -0.66 0.37
Durable Output -5.01 -5.88
[t] -3.10 -2.85
O -2.71 0.49
[t] -2.79 0.42
Z -2.07 0.22
[t] -1.46 0.19
DD -1.59 -1.87
[t] -1.51 -1.47
FP -17.55 -18.49
[t] -1.37 -3.85
Log ME -0.75 0.36
[t] -0.67 0.29
Log B/M 4.82 4.77
[t] 8.73 5.66
ROA 6.36 6.91
[t] 8.98 6.72
I/K -1.13 -1.62
[t] -2.78 -2.37
OC/AT 1.03 1.66
[t] 2.29 2.42
R&D/AT 5.71 6.11
[t] 7.05 6.97
Book Lev. -1.89 -0.57 -2.02 -1.66 -1.55 -1.85 -0.75 -2.57 -1.71 -1.40 -0.99 -0.32
[t] -4.17 -1.09 -4.48 -3.33 -2.94 -4.11 -1.32 -5.52 -3.62 -2.99 -2.28 -0.43

Observations 846,277 632,464 778,893 725,608 737,897 846,277 819,508 841,335 608,519 750,884 806,449 476,878
R-squared 0.09 0.10 0.09 0.11 0.09 0.09 0.09 0.09 0.10 0.09 0.11 0.14
Industry FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
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Table IA.3: Firm Characteristics

This table presents time-series averages of the cross-sectional median values of firm characteristics across five
portfolios. These portfolios are sorted based on asset durability relative to their industry peers, and industry
classifications are based on NAICS 3-digit codes. The portfolios are rebalanced at the end of every June. The
sample used for this analysis covers the years from 1977 to 2016, and it excludes industries in the financial,
utility, and public administrative sectors. To differentiate between financially constrained and unconstrained
firms, we classify the entire sample into these two categories at the end of each June. This classification is
based on the dividend payment dummy as indicated by the dividend payment dummy (DIV), following the
approach outlined in Farre-Mensa and Ljungqvist (2016). We report the results for the five portfolios that
are part of the financially constrained subsample. For a detailed understanding of the variables and their
definitions, please refer to Table IA.5 in the Internet Appendix.

Variables L 2 3 4 H

Asset Durability 7.69 9.99 11.45 14.24 18.00
Depreciation 0.19 0.16 0.15 0.13 0.11
Log ME 4.88 5.13 5.16 5.22 5.07
B/M 0.48 0.51 0.53 0.60 0.67
I/K 0.37 0.30 0.28 0.24 0.22
q 1.65 1.54 1.48 1.37 1.27
ROA 0.07 0.09 0.10 0.11 0.11
ROE 0.12 0.17 0.18 0.22 0.23
OC/AT 0.36 0.25 0.21 0.17 0.13
R&D/AT 0.03 0.03 0.03 0.00 0.00
Collateralizability 0.21 0.25 0.27 0.37 0.51
Book Lev. 0.13 0.19 0.21 0.28 0.32
Short-term Lev. 0.02 0.02 0.02 0.03 0.03
Long-term Lev. 0.04 0.09 0.11 0.17 0.21
TANT 0.08 0.13 0.17 0.25 0.34
SA -2.47 -2.68 -2.80 -2.91 -2.92
WW -0.16 -0.18 -0.19 -0.20 -0.20
Number of Firms 365 345 301 393 417
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Table IA.4: Asset Durability and Depreciation across BEA Industries

This table provides summary statistics for the average asset durability and depreciation associated with
tangible and intangible assets across various industries. The industries are categorized according to the BEA
industry classifications. The data cover the period from 1977 to 2016.

BEA Industries Tangible Intangible

Industry Name Durability Depreciation Durability Depreciation

Farms 27.92 0.07 2.58 0.40
Forestry, fishing, and related activities 24.43 0.09 2.38 0.43
Oil and gas extraction 14.98 0.07 4.33 0.23
Mining, except oil and gas 20.56 0.07 4.50 0.23
Support activities for mining 13.67 0.09 3.40 0.30
Utilities 40.49 0.03 3.38 0.31
Construction 20.13 0.10 3.95 0.26
Wood products 22.67 0.07 4.61 0.23
Nonmetallic mineral products 20.65 0.07 5.90 0.17
Primary metals 21.28 0.07 5.73 0.17
Fabricated metal products 19.36 0.08 5.68 0.18
Machinery 20.94 0.07 5.68 0.18
Computer and electronic products 22.97 0.07 3.44 0.29
Electrical equipment, appliances, and components 23.98 0.06 5.89 0.17
Motor vehicles, bodies and trailers, and parts 17.97 0.08 3.19 0.31
Other transportation equipment 24.09 0.06 4.47 0.22
Furniture and related products 23.05 0.06 5.37 0.19
Miscellaneous manufacturing 22.33 0.07 5.86 0.17
Food, beverage, and tobacco products 21.90 0.07 5.55 0.18
Textile mills and textile product mills 22.65 0.06 5.46 0.18
Apparel and leather and allied products 26.52 0.06 5.73 0.17
Paper products 18.12 0.08 5.38 0.19
Printing and related support activities 19.06 0.08 5.02 0.21
Petroleum and coal products 21.09 0.07 5.86 0.17
Chemical products 22.25 0.07 8.09 0.12
Plastics and rubber products 18.44 0.08 5.72 0.18
Wholesale trade 24.93 0.08 4.13 0.25
Retail trade 33.63 0.05 4.05 0.26
Air transportation 19.23 0.07 3.28 0.31
Railroad transportation 44.31 0.03 4.30 0.25
Water transportation 18.99 0.06 4.08 0.26
Truck transportation 11.49 0.14 4.19 0.26
Transit and ground passenger transportation 35.17 0.05 3.50 0.30
Pipeline transportation 39.5 0.03 3.12 0.32
Other transportation and support activities 30.07 0.06 3.50 0.31
Warehousing and storage 37.45 0.04 3.88 0.28
Publishing industries (including software) 23.51 0.07 6.39 0.16
Motion picture and sound recording industries 29.43 0.05 7.86 0.13
Broadcasting and telecommunications 34.89 0.04 5.42 0.19
Information and data processing services 22.86 0.10 4.50 0.23
Federal Reserve banks 34.66 0.05 3.25 0.31
Credit intermediation and related activities 26.75 0.07 2.99 0.34
Securities, commodity contracts, and investments 35.37 0.04 3.12 0.32
Insurance carriers and related activities 33.83 0.05 3.10 0.33
Funds, trusts, and other financial vehicles 40.54 0.03 3.02 0.33
Real estate 40.04 0.03 2.89 0.35
Rental and leasing services and lessors of intangible assets 10.84 0.12 2.87 0.35
Legal services 31.14 0.06 2.57 0.40
Computer systems design and related services 31.76 0.07 2.83 0.35
Miscellaneous professional, scientific, and technical services 26.62 0.07 5.41 0.19
Management of companies and enterprises 35.71 0.04 3.23 0.31
Administrative and support services 29.09 0.07 2.79 0.36
Waste management and remediation services 48.14 0.05 3.91 0.26
Educational services 49.49 0.03 4.80 0.21
Ambulatory health care services 34.39 0.06 4.86 0.21
Hospitals 45.77 0.04 4.39 0.24
Nursing and residential care facilities 39.67 0.04 5.05 0.20
Social assistance 37.26 0.04 3.18 0.32
Performing arts, spectator sports, museums, and related activities 36.87 0.04 6.10 0.16
Amusements, gambling, and recreation industries 30.35 0.05 3.95 0.26
Accommodation 48.59 0.03 4.07 0.25
Food services and drinking places 27.15 0.07 4.16 0.24
Other services, except government 43.02 0.04 5.24 0.19
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Table IA.5: Definition of Variables

Variables Definition Sources

Durability Details refer to Section 2.1 BEA; Compustat

Depreciation Details refer to Section 2.1 BEA; Compustat

ME (real)
Market capitalization deflated by CPI at the end of
June in year t.

CRSP

B/M
The ratio of book equity of fiscal year ending in
year t-1 to market equity at the end of year t-1.

Compustat

Tobin’s q
The sum of market capitalization at the end of the
year and book value of preferred shares deducting
inventories over total assets (AT).

CRSP; Compustat

I/K
The ratio of investment (CAPX) to purchased
capital (PPENT).

Compustat

ROA
The ratio of operating income before depreciation
(OIBDP) over total assets (AT).

Compustat

ROE
The ratio of operating income before depreciation
(OIBDP) over book equity.

Compustat

OC/AT Following Peters and Taylor (2017). Compustat

R&D Intensity Following Peters and Taylor (2017). Compustat

Tangibility
The ratio of purchased capital (PPENT) to total
assets (AT).

Compustat

Book Lev.
The sum of long-term liability (DLTT) and current
liability (DLCT) divided by total assets (AT).

Compustat

Short-term Lev.
Current liability (DLCT) divided by total assets
(AT).

Compustat

Long-term Lev.
Long-term liability (DLTT) divided by total assets
(AT).

Compustat

DIV Following Farre-Mensa and Ljungqvist (2016). Compustat

SA Index Following Hadlock and Pierce (2010). Compustat

Credit Rating

The entire list of credit ratings is as follows: AA+,
AA, and AA- = 6, A+, A, and A- = 5, BBB+,
BBB, BBB- = 4, BB+, BB, BB- = 3, B+, B, and
B- = 2, rating below B- or missing is 0.

Compustat

WW Index Following Whited and Wu (2006). Compustat

IA-26



References

Ai, Hengjie, Jun E Li, Kai Li, and Christian Schlag, 2020, The collateralizability premium,
The Review of Financial Studies 33, 5821–5855.

Bharath, Sreedhar T, and Tyler Shumway, 2008, Forecasting default with the merton dis-
tance to default model, The Review of Financial Studies 21, 1339–1369.

Campbell, John Y, Jens Hilscher, and Jan Szilagyi, 2008, In search of distress risk, The
Journal of Finance 63, 2899–2939.

Campello, Murillo, and Erasmo Giambona, 2013, Real assets and capital structure, Journal
of Financial and Quantitative Analysis 48, 1333–1370.

Christiano, Lawrence J., and Jonas D. M. Fisher, 2000, Algorithms for solving dynamic
models with occasionally binding constraints, Journal of Economic Dynamics and Control
24, 1179–1232.

Fama, Eugene F, and Kenneth R French, 1993, Common risk factors in the returns on stocks
and bonds, Journal of financial economics 33, 3–56.

Fama, Eugene F., and Kenneth R. French, 2015, A five-factor asset pricing model, Journal
of Financial Economics 116, 1–22.

Fama, Eugene F, and James D MacBeth, 1973, Risk, return, and equilibrium: Empirical
tests, Journal of political economy 81, 607–636.

Farre-Mensa, Joan, and Alexander Ljungqvist, 2016, Do measures of financial constraints
measure financial constraints?, The Review of Financial Studies 29, 271–308.

Galindev, Ragchaasuren, and Damba Lkhagvasuren, 2010, Discretization of highly persistent
correlated ar(1) shocks, Journal of Economic Dynamics and Control 34, 1260–1276.

Gomes, Joao F, Leonid Kogan, and Motohiro Yogo, 2009, Durability of output and expected
stock returns, Journal of Political Economy 117, 941–986.

Griffin, John M, and Michael L Lemmon, 2002, Does book-to-market equity proxy for distress
risk?, Journal of Finance 57, 2317–2336.

Gu, Lifeng, Dirk Hackbarth, and Tim Johnson, 2018, Inflexibility and stock returns, The
Review of Financial Studies 31, 278–321.

Hadlock, Charles J, and Joshua R Pierce, 2010, New evidence on measuring financial con-
straints: Moving beyond the kz index, Review of Financial Studies 23, 1909–1940.

Hou, Kewei, Chen Xue, and Lu Zhang, 2015, Digesting Anomalies: An Investment Approach,
Review of Financial Studies2 28, 650–705.

Kim, Hyunseob, and Howard Kung, 2017, The asset redeployability channel: How uncer-
tainty affects corporate investment, The Review of Financial Studies 30, 245–280.

IA-27



Peters, Ryan H, and Lucian A Taylor, 2017, Intangible capital and the investment-q relation,
Journal of Financial Economics 123, 251–272.

Whited, Toni M., and Guojun Wu, 2006, Financial constraints risk, Review of Financial
Studies 19, 531–559.

Zhang, Lu, 2005, The value premium, Journal of Finance 60, 67–103.

IA-28


	Supplemental Materials on Empirical Analysis
	Empirical Asset Pricing Tests

	Computation Details on Model Solutions
	Recast of the Law of Motion for Ease of Computation
	Recast of the Recursive Equilibrium
	Functional Approximation
	Outline of the Algorithm
	Computational Efficiency

	Proof of Proposition 1
	Data Construction
	Asset Prices and Accounting Data

	Additional Empirical Evidence
	More Detailed Firm Characteristics
	Summary Statistics across Industries


